首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研制出了一种90 mm×60 mm×85 mm,可用于精密微装配作业的全方位微小型机器人,机器人集成了移动定位单元与精密微操作单元,移动定位单元由微型电机驱动的快速宏运动单元与压电陶瓷驱动的精密微运动单元两部分组成,最大宏运动速度为50 mm/s,开环定位精度1 mm,微运动最大速度200 μm/s,开环定位精度1 μm,分辨率为50 nm;微操作单元由压电陶瓷驱动的球基微驱动器与微夹持器两部分组成,微驱动器转动分辨率为0.000 1°,定位精度为0.000 5°,微驱动器金属球可以实现空间复杂的扫描运动,同时带动微夹持器末端实现精密定位,微夹持器采用压电陶瓷驱动的两级杠杆放大机构,末端最大张合位移为280 μm,最大微夹持力为0.1 N.开发了基于视觉反馈的微装配作业控制系统,并在视觉的引导下,实现了机器人对微型齿轮、微型轴/孔等元件的夹取、搬运等微作业任务,并顺利完成了Φ180 μm微型轴与Φ200 μm微型孔之间的精密装配实验研究.  相似文献   

2.
采用压电陶瓷作为微驱动元件,设计了一种尺寸为50 mm×50 mm×10 mm,基于尺蠖蠕动原理工作的新型全方位精密微小型移动机器人,以其作为负载平台,用于精密操作过程中对微小元件的搬运、操作、精密定位等.在介绍尺蠖蠕动工作原理的基础上,对机器人的运动特性进行了分析,建立了机器人全方位运动模型.对机器人进行了分辨率、定位精度以及全方位运动等的实验研究,实验结果表明,该机器人负载能力约为750 g,最大工作频率可达40 Hz,运动速度可达208 μm/s,运动分辨率可达50 nm,开环直线定位偏离率约为5%;在采用了逐次逼近法进行误差补偿和显微视觉实现闭环控制后,定位精度可达100 nm,可以作为一种通用的高精密移动定位平台,在机器人上集成多种精密微操作器件后,可完成多种微作业任务.  相似文献   

3.
电磁箝位型压电精密步进旋转驱动器   总被引:2,自引:2,他引:0  
根据步进运动原理,采用分立式布局,研制了大行程高分辨率精密旋转驱动器。该驱动器采用电磁杠杆柔性铰链箝位,以压电陶瓷为驱动源,采用柔性盘铰链把压电叠堆的直线运动转化成旋转运动,实现了大行程精密步进旋转驱动。实验结果表明:该驱动器具有箝位牢固、分辨率高、行程大等特点,适用于微操作中大行程高分辨率的旋转驱动。  相似文献   

4.
一种超精密压电式微位移机构研究   总被引:8,自引:0,他引:8  
针对压电陶瓷输出位移过小的缺点,采用AE0505D16型层叠式PZT器件作为驱动器,柔性铰链作为导向机构,设计了一种超精密压电式微位移机构.该机构输出位移由原来的11.6μm增加到100μm,能够满足许多长行程、超精定位运动的需要.对此微位移机构进行定位准确度测试,将它作为位移补偿装置安装于精密滚珠丝杠副驱动的机床上,机床定位误差由原来的1μm降低到0.01μm,定位准确度得到显著提高.  相似文献   

5.
介绍用于MEMS自动微装配的机器人系统的构成,讨论组成该系统的若干关键技术,包括宏/微精密定位技术、显微视觉系统、微夹持器的设计、系统的标定以及装配策略.集成各单元技术,以外径<2 mm的微行星齿轮减速器为示范装配对象,研制能够完成微装配任务的微装配机器人.融合显微视觉和力信息,采用相应的装配策略,在2.5 min内,实现难度最大的3个行星齿轮的自动装配.  相似文献   

6.
提出一种新型的压电精密步进旋转驱动器。该驱动器采用仿生运动的原理,以定子内箝位的方式和均布薄壁柔性铰链微变形结构,解决了以往压电精密驱动器箝位不牢固、旋转步进频率较低、行程小、分辨率低、速度低、输出不稳定等问题。研制的精密旋转驱动器能够实现高频率(30 Hz)、高速度(380μrad/s)、大行程(>270°)、高分辨率(1μrad/step)、且输出稳定,大幅度提高了压电步进旋转驱动器的驱动性能。该驱动器在精密运动、微操作、光学工程、精密定位等精密工程中有广阔的应用前景。  相似文献   

7.
研究、设计了一种柔性压电式微定位机构。此机构采用压电陶瓷作为微位移驱动器,柔性铰链为导向机构,对丝杠螺母传动的精密机床工作台的运动位置进行自动补偿,实现了超精密定位。文中对柔性铰链机构进行了合理的设计及参数分析,并应用于精密机床中进行定位精度测试。实测结果表明,采用柔性压电式微位移机对精密机床工作台二次精定位,可使工作台定位精度提高到0.01μm,可满足精密、超精密加工需要。  相似文献   

8.
一种基于力传感器机器人装配作业的研究   总被引:1,自引:0,他引:1  
介绍了一种具有力觉功能的新型机器人二自由度平面微操作器,研制了具有四种选择细分数功能FRMW高细分驱动器,FPMW与普通工业机器人PUMA562组成宏/微操作器系统,在开发的基于力/力矩信息的平面搜孔软件的指挥下,机器人宏/微操作器系统成功完成了精密轴孔装配作业,平均装配时间4.2秒。  相似文献   

9.
基于PZT的宏/微驱动机器人研究   总被引:7,自引:1,他引:6  
综述了基于PZT的宏/微机器人的概念、现状、应用及所展开的相关研究成果,阐述了宏/微机器人克服了传统定位系统的局限性,可以同时满足大行程.高速高准确度的定位要求;压电陶瓷作为一种新型驱动器具有结构紧凑、体积小,可以做到无机械摩擦、无间隙、较高的位移分辨率等特点,用于宏/微结合,可得到了良好的效果.介绍了基于PZT的宏/微机器人的研究现状和成果,这些宏/微机器人分别用于精密装配、光纤对接、IC封装、生物工程、柔性手臂等领域。  相似文献   

10.
新型惯性式压电旋转驱动器   总被引:1,自引:0,他引:1  
提出通过机械方式控制压电移动驱动器和支撑面之间摩擦力的有序变化,形成有规律运动的新型惯性式压电旋转驱动器的研究方案。设计了旋转驱动器的结构模型,分析了驱动器的受力和运动原理,制作了旋转驱动器样机,并作了相关的性能测试,得到了旋转驱动器的旋转步长,转速随驱动电信号频率、幅值变化的关系曲线。试验结果表明,研制的旋转驱动器能实现大行程(360°)、高分辨率(15μrad)、高转速(0.26 rad/s),且运动性能稳定。该旋转驱动器在精密运动、微操作、光学工程、精密定位等精密工程中有广阔的应用前景。  相似文献   

11.
用压电陶瓷实现精密工件台的微定位控制   总被引:6,自引:0,他引:6  
以压电陶瓷微位移原理为基础,对精密驱动技术在精密定位工件台上应用作了实验研究,设计了一个包括高压精密可调电源,压电微位移驱动器,作为反馈元件的光栅干涉仪,以及由IBMPC机和单片机组成的控制系统。  相似文献   

12.
蠕动式精密直线驱动器   总被引:14,自引:2,他引:12  
基于蠕动原理和误差补偿技术,用压电陶瓷作为动力源设计了一种精密直线驱动器。建立了驱动器的动力学模型,并制作了样机。试验表明:在计算机闭环控制下,该驱动器能够可靠地实现双向运动。在行程为1mm时,定位精度达到±0.01μm;有效驱动力为20N。  相似文献   

13.
3-PUU并联微操作机器人系统   总被引:1,自引:0,他引:1  
为了开发一套以微小物体为操作对象的操作系统,讨论了微操作机器人的机构选型、微位移器的选用、 显微图像的特点及其处理方法.采用基于数学分析与实验结果相结合得到的控制模型,实现了压电陶瓷的开环 控制,最后对该系统进行了微动写字实验.结果表明:该系统能够通过显微视觉系统使微操作对象和操作过程 可视化,在足够大的工作空间内按照规划轨迹进行运动,并能保证微操作手末端运动分辨率达到0.1μm.  相似文献   

14.
具有纳米分辨力二维超精密定位系统的研制   总被引:2,自引:0,他引:2  
针对传统超精密定位系统存在位移灵敏度、系统频响及重复定位精度难以兼顾的问题,设计并研制了一种具有纳米分辨力的二维超精密定位系统.系统集成平行四连杆结构双柔性二维工作台无间隙传动、双极性可伸缩压电陶瓷微位移驱动和纳米精度电容位移监测等先进技术,在微处理器控制下可实现纳米量级的定位.为改善传统PID控制方法存在的精度低、实时性差等缺陷,提出了一种结合定位过程中各阶段系统不同响应特性的比例、积分和微分(PID)参数自适应控制算法.结果表明:平行四连杆结构能有效地消除运动方向间的交叉耦合,确保了工作台在运动方向上的直线度;在30μm行程内,单轴位移分辨力优于1nm,重复定位精度优于10nm,最大行程时响应时间〈1s.  相似文献   

15.
为了提高管道机器人的装载能力、运行速度并使机器人具有感知其自身位移的能力,研制了一种基于钹形压电驱动器和光学导航技术的微型管道机器人.设计了基于Φ8 mm钹形压电驱动器的管道机器人装载机构,建立了该装载机构的动力学模型,并分别用有限元法分析和实验验证了该动力学模型.采用基于快速图像获取和图像处理技术的光学导航芯片,设计了机器人自身位移检测单元.实验结果表明,该机器人装载机构负载可达自身重量的4倍,最大速度达41.7 mm/s,自身位移检测单元能检测机器人在管道内的直线和旋转运动位移,检测精度为3‰.  相似文献   

16.
介绍了面曝光快速成形实验系统的基本原理,构建了由运动控制卡、驱动器、精密滚珠丝杠、直线导轨等组成的升降工作台,并对其运动精度进行了测试和评定.工作台向下进给时,定位精度为10.9μm,单向重复定位精度为10.8μm;工作台向上进给时,定位精度和单向重复定位精度都为7.6μm.测试结果表明,该系统能够满足制作小尺寸零件的精度要求.  相似文献   

17.
在对驱动器机械结构进行设计分析的基础上,建立了以压电叠堆为驱动元件的精密旋转驱动的数学模型,并对所设计的驱动器样机从旋转运动分辨率、运动稳定性、旋转速度及承载等方面进行了实验测试。测试结果表明,所开发的驱动器样机旋转速度可达2990.6μrad/s、输出扭矩0.147 N.m、最小旋转步距(旋转分辨率)小于0.32μrad,运动行程为连续360°,驱动器性能稳定可靠。  相似文献   

18.
基于规则的仿人智能控制在微驱动系统中的应用   总被引:9,自引:1,他引:8  
根据三角形放大原理设计出一种以压电陶瓷为驱动元件,应变片为微位移传感元件的精密微位移机构。由于压电陶瓷存在迟滞,蠕变和非线性不足,并且难于得到其准确的数学模型,采用常规线性PID控制方法很难实现微驱动机构的高速度精度控制。  相似文献   

19.
基于PZT的面内压电微驱动器是一种能够在面内产生水平运动的微型驱动器,由下层的Si单质和上层的PZT组成.通过施加电场,使驱动器末端产生位移来实现驱动功能.本文通过将整个驱动器划分为横梁和斜梁,以横梁和斜梁连接处位移相等为条件,求出二者连接处的受力大小,进而给出微驱动器在z方向电场作用下y方向上的形变关于各个结构参数及电场的函数表达式.  相似文献   

20.
提出了基于压电技术的微操作系统的自动标定方法,采用混合式步进电机直接驱动的宏动平台,实现系统大行程宏动定位,安装在宏动平台上的压电陶瓷驱动的微动平台和精密光栅,实现亚微米级的分辨率和定位精度,通过以上两部分实现定位机构的全闭环反馈控制,采用显微视觉反馈获取微动台操作器在图像中的位置信息进行标定。实验结果表明:系统的动态和稳定性能良好,自动标定运算速度快,运行速度达到11 frame/s,实现了对系统的精确标定,标定精度达到0.1μm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号