首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
为了降低原料成本和适于工业化生产,以混合稀土取代氧化镧经硝酸溶解后,共沉淀法分别制备了Sr、Ca掺杂阴极材料Ln-Sr(or Ca)-Cu-O(Ln为混合稀土)的前驱体,在优化条件800℃下煅烧3.5 h形成了粉体,XRD证实形成的物相为CeO2立方萤石相与钙钛矿相。当2θ在20°~30°变化时,Sr2+掺杂使Ln0.5Sr0.5CuO3-δ形成的钙钛矿结构衍射峰相对完整;当2θ在30°~45°变化时,Ca2+掺杂却使Ln0.5Ca0.5CuO3-δ钙钛矿结构衍射峰发生扭曲;而2θ在50°~60°时,Ln0.5Ca0.5CuO3-δ和Ln0.5Sr0.5CuO3-δ衍射峰发生了不同程度的偏移和裂变。直流四探针法对合成产物烧结样品的电导率测量结果表明,在相同条件下,Ln0.5Sr0.5CuO3-δ电导率大于Ln0.5Ca0.5CuO3-δ电导率,在420℃时电导率达到最大值,分别为574和559 S/cm。在中温固体氧化物燃料电池工作温度500~800℃,阴极材料电导率超过500 S/cm,满足电池阴极材料电性能的要求。  相似文献   

2.
柠檬酸盐法制备La0.7Sr0.15Ca0.15Co1-xFexO3-δ(x=0.2、0.4、0.6、0.8)阴极材料。该前驱体在900℃处理2h后,XRD证实已经形成完整的钙钛矿结构衍射峰。随Fe掺杂量增加,XRD谱图衍射峰的位置向小角度发生偏移,粉体的晶粒尺寸逐渐变大。SEM观察La0.7Sr0.15Ca0.15Co1-xFexO3-δ粉体其表面活性较高并出现了一定的团聚现象,颗粒尺寸约为5μm。以La0.7Sr0.15Ca0.15Co1-xFexO3-δ为阴极,在氢气/空气中研究了模压法制备的单电池性能,Fe掺杂量对开路电压的高低不起决定性作用,而最高功率密度随Fe掺杂量增加而降低,在650℃最高功率密度由x=0.2时的351.7mW/cm2降为x=0.8时的231.1mW/cm2。  相似文献   

3.
柠檬酸法制备了La0.7Ba0.15E0.15Fe0.8Co0.2O3(LBEFC,E=Sr,Ca)系列阴极材料,利用XRD、SEM对LBEFC晶体结构、微观形貌进行分析,采用四探针法测试了LBEFC的电导率。实验结果表明,1 000℃煅烧2 h,LBEFC可以形成单一的畸变钙钛矿结构,LBEFC衍射峰较LaFeO3衍射峰向右偏移,晶胞参数a、b减小,c增大。La0.7Ba0.15Sr0.15Fe0.8Co0.2O3和La0.7Ba0.15Ca0.15Fe0.8Co0.2O3晶胞体积膨胀率分别为43.5%、42.7%,晶格畸变主要发生在(200)、(211)晶面方向。在300~800℃,LBEFC电导率均大于100 S/cm,满足中温固体氧化物燃料电池阴极材料的要求。LBEFC与新型电解质Ce0.8Sm0.2O2在1 200℃下烧结5 h,没有新相生成,具有良好的相容性。  相似文献   

4.
采用低温燃烧合成技术制备了La1-xSrxCuO0.9Fe0.1O2.5-δ(x=0.1~0.4)粉体.分别利用X射线衍射(XRD)和差热分析(DTA)技术对粉体的性能进行了表征.XRD结果表明,经800℃培烧的La0.9Sr0.1CU0.9Fe0.1O2.5-δ粉体的对称性较低,未形成钙钛矿结构,其余La1-xSrxCu0.9Fe0.1O2.5-δ(x=0.2~0.4)粉体为四方钙钛矿结构,晶体结构参数之间满足关系式a=b≈2 c.DTA结果显示,La1-xSrxCu0.9Fe0.1O2.5-δ在1000℃以下是热力学稳定的,不会发生分解反应.采用直流四电极法测试了La1-xSrxCuO0.9Fe0.1O2.5-δ试样在100~800 ℃之间的电导率.试样的电导率In(δT)与1/T之间呈很好的线性关系,说明La1-xSrxCuO0.9Fe0.1O2.5-δ在测试温度范围内服从小极化子导电机制.Sr掺杂量对试样的电导率和电导活化能有着明显的影响,当Sr掺杂量为0.3时,La1-xSrxCuO0.9Fe0.1O2.5-δ的电导率最高,电导活化能最小.  相似文献   

5.
通过固相反应法制备了钙钛矿氧化物Ba0.6Sr0.4Co0.9Nb0.1O3-δ(简称BSCN0.6),采用XRD对BSCN0.6与Gd0.1Ce0.9O1.95(简称GDC)电解质间的高温化学相容性进行表征。结果表明,BSCN0.6与GDC高温煅烧后存在微弱的固溶反应,但并未对阴极性能造成不利影响。将BSCN0.6与质量分数为30%的GDC复合(简称BSCN0.6-30%GDC)后作SOFC阴极,采用四电极法测电导、热膨胀测试等手段对复合阴极进行表征。结果表明,BSCN0.6与GDC复合降低了材料的电导率,同时也降低了材料的热膨胀系数,提高了阴极与GDC电解质间的热匹配性。以BSCN0.6-30%GDC复合材料作电极,700~800℃时对称电池BSCN0.6-30%GDC//GDC的极化阻抗为0.047~0.012Ω·cm2。因此,BSCN0.6-30%GDC复合材料有望作IT-SOFC的低极化阻抗的阴极材料。  相似文献   

6.
以金属硝酸盐为前驱体、氨水为沉淀剂,采用共沉淀法合成了La0.7Sr0.2Ca0.1Co1-yFeyO3-δ(简称:LSCCF,y=0.1,0.2和0.4)粉料.借助差示扫描量热-热重分析 (DSC-TG) 、X 射线衍射分析(XRD) 和扫描电子显微镜( SEM) 对LSCCF 粉料的形成过程、晶体结构和粒度形貌进行了研究.实验结果表明,LSCCF 粉料的形成过程分为三个阶段--脱水阶段、LaCoO3 基氧化物形成阶段和LSCCF 固溶体形成阶段;适宜热处理制度为800 ℃下保温4 h,且制备出的LSCCF 粉料为均一的钙钛矿结构.使用直流四极探针法测定了LSCCF 样品在空气气氛下的电导率,发现该体系材料在500~800 ℃范围的电导率都超过了300 S·cm-1,其导电机制符合p 型小极化子绝热孔隙理论,且能够满足中温固体氧化物燃料电池(ITSOFC)阴极材料的要求.  相似文献   

7.
采用尿素-硝酸盐燃烧法对磷灰石型LSO电解质进行了三价稀土元素Nd和二价碱土元素Sr的La位掺杂,对合成样品进行XRD、SEM分析表征,并测试和分析了样品的电导率.结果表明:Sr、Nd掺杂对LSO的晶体结构、物相和形貌产生的影响很小,而适量的掺杂可有效提高LSO的氧离子传输性能.当掺杂x=0.3时,La9.33Mx(SiO4)6O2+δ(M=Sr、Nd)具有最高离子电导率,La9.33M0.3(SiO4)6O2+δ在500℃时的电导率分别为7.248×10-3S.cm-1、1.782×10-2S.cm-1.Nd掺杂不仅可以提高电导率,还可以降低传导活化能,相比于Sr掺杂更有利于LSO在中低温SOFCs中的应用.实验认为,Sr、Nd掺杂的LSO属于间隙氧传导机制,掺杂可以提高间隙氧的数量,间隙氧相比阳离子空位对LSO电导率的影响更大.  相似文献   

8.
采用尿素-硝酸盐燃烧法对磷灰石型LSO电解质进行了三价稀土元素Nd和二价碱土元素Sr的La位掺杂,对合成样品进行XRD、SEM分析表征,并测试和分析了样品的电导率.结果表明:Sr、Nd掺杂对LSO的晶体结构、物相和形貌产生的影响很小,而适量的掺杂可有效提高LSO的氧离子传输性能.当掺杂x=0.3时,La9.33Mx(SiO4)6O2+δ(M=Sr、Nd)具有最高离子电导率,La9.33M0.3(SiO4)6O2+δ在500℃时的电导率分别为7.248×10-3S.cm-1、1.782×10-2S.cm-1.Nd掺杂不仅可以提高电导率,还可以降低传导活化能,相比于Sr掺杂更有利于LSO在中低温SOFCs中的应用.实验认为,Sr、Nd掺杂的LSO属于间隙氧传导机制,掺杂可以提高间隙氧的数量,间隙氧相比阳离子空位对LSO电导率的影响更大.  相似文献   

9.
中温固体氧化物燃料电池(SOFCs)的工作温度应低于800℃。本文重点对ZrO2基、CeO2基、Bi2O3基和ABO3型电解质材料的最新进展和发展趋势作了综述。以8%氧化钇稳定氧化锆(8YSZ)作为电解质的SOFCs,工作温度在1000℃左右。经较低价的碱土和稀土离子(Sr2+,Ca2+,Sc3+和Y3+)掺杂稳定ZrO2,在800℃,氧化钪掺杂氧化锆(Zr0.9Sc0.1O1.95,scandia doped zirconia,SSZ)的电导率(0.1S/cm)比Zr0.9Y0.1O1.95(10YSZ)的(0.03S/cm)高得多。薄膜化是改进氧化锆基电解质的电导性能的另一个途径。厚度小于10μm的YSZ基SOFCs,在800℃时功率密度最大可达2W/cm2。研究新的稳定的双掺杂电解质材料将会是CeO2基材料研究的重点。Y2O3和Sm2O3共掺杂(Y0.1Sm0.1Ce0.8O1.9,YSCO)在800℃时电导率可达到0.0549S/cm,电导活化能为0.77eV。Sr和Mg共掺杂LaGaO3(LSGM)阳离子导体已成为中低温SOFCs的重要候选电解质材料。钙钛矿型氧化物是除了Bi2O3以外氧离子电导率最高的陶瓷材料。寻求新的、优良的中温SOFCs电解质材料仍是目前推动中温SOFCs实用化的关键因素之一,薄膜化技术是研究的另一个重点。  相似文献   

10.
提出一种低成本高效率的化学方法,用以制备钙钛矿结构固体氧化物燃料电池(SOFC)阴极材料La0.8Sr0.2Co0.5Fe0.5O3-8(LSCF).该方法与传统方法不同,采用非螯合聚合物-聚乙烯醇(PVA,Polvinyl alcohol)作为阳离子的载体,形成含有La3+,Sr2+,Co2+,Fe3+4种金属阳离子和非螯合聚合物的均匀溶胶,干燥生成固体凝胶状前驱体.进行热重(TG)分析和傅立叶红外(FT-IR)分析,在此基础上制定了一系列前驱体凝胶煅烧工艺制度,确定了最佳煅烧温度750℃,获得了钙钛矿型LSCF阴极材料.对LSCF粉末进行了X射线衍射(XRD)相分析,证实了所得粉末材料具有钙钛矿结构.通过扫描电子显微镜(SEM)对粉体进行微观形貌结构观察,证实制得的LSCF粉为纳米级,但存在团聚.采用直流伏安法检测其导电性能,证实以其作为阴极材料,在中温SOFC的工作温度下具有良好的混合导电性能.  相似文献   

11.
采用固相反应法合成了中温固体氧化物燃料电池(IT-SOFCs)阴极材料Ba0.6Sr0.4Co0.9Nb0.1O3-δ(BSCN)。利用XRD对该材料的结构进行了表征。研究表明,室温下阴极材料BSCN成立方相结构(Pm-3m);将该阴极材料与电解质Ce0.9Gd0.1O1.95(GDC)混合,并在1 000℃煅烧10h后,它们之间无化学反应发生。在SOFCs的操作温度(600~800℃)下,BSCN阴极的电导率可达21~27S/cm。热膨胀测试表明,BSCN的热膨胀系数为17.0×10-6/K,明显低于SrCo0.9Nb0.1O3-δ(SCN)的热膨胀系数,这有利于提高阴极与电解质GDC间的热匹配性。以BSCN作电极,GDC作电解质,制备对称电池BSCN/GDC/BSCN,研究电极与电解质间的极化阻抗。750℃时,极化阻抗仅为0.026Ω.cm2。以BSCN作阴极,NiO-SDC(NiO-Ce0.8Sm0.2O1.9)作阳极,300μm厚的GDC作电解质,制备单电池BSCN/GDC/NiO-SDC。800℃时,单电池的最大功率密度可达782mW/cm2。以上结果表明,BSCN有望成为中温固体氧化物燃料电池阴极的候选材料。  相似文献   

12.
利用溶胶-凝胶法合成固体电解质Ce1-xHoxO2-δ(x=0.05~0.30),采用X-射线衍射仪(XRD)、拉曼光谱仪(Raman)、原子力显微镜(AFM)对样品的结构进行表征,利用交流阻抗谱测试掺杂稀土Ho对其电性能的影响.XRD结果表明:800℃焙烧的所有样品均为单相立方萤石结构,Raman光谱表明:Ce0.85Ho0.15O2-δ具有氧缺位的萤石结构,AFM照片显示Ce0.85Ho0.15O2-δ致密度较好,阻抗谱结果表明:掺入Ho3+提高了Ce1-xHoxO2-δ的电导率,Ce0.85Ho0.15O2-δ的电导率最高,活化能最小,600℃时的电导率为0.016 S·cm-1,活化能为0.92 eV,比未掺杂的CeO2的电导率提高了4个数量级.  相似文献   

13.
用溶胶-凝胶法合成了固体电解质Ce0.8Gd0.2-xYxO2-δ(x=0,0.05,0.10).用X射线衍射谱、拉曼光谱分析了样品的微观结构,用交流复阻抗谱研究了样品的电学性能.结果表明:800℃焙烧的所有样品均为具有氧缺位的单相立方萤石结构,晶胞参数随钇(Y)掺杂量增加而减小.钇掺杂量x=0.05的样品Ce0.8Gd0.15Y0.05O2-δ的电导率最高,导电活化能最小,(σ700℃=5.58×10-3S·cm-1,Eα=0.92 eV),高于未掺杂Y的Ce0.8Gd0.2O2-δ样品的电导率(σ700℃=5.38×10-3S·cm-1Eα=1.09 eV).说明适量双掺杂Y提高了Ce0.8Gd0.2-xYxO2-δ的电导率并且降低了其活化能.  相似文献   

14.
Ln0.6Sr0.4Co0.8Fe0.2O3 (Ln=La, Pr, Nd, Sm) perovskite-type complex oxides were synthesized using a glycine-nitrate process, and the structure, electrical conducting and thermal expansion properties of the resulting ceramics were examined with regard to the nature of the lanthanide cations. The results indicated that the La, Pr and Nd specimens had a rhombohedral symmetry, while an orthorhombic structure was determined for the Sm specimen. The pseudo-cubic lattice constant decreased with smaller lanthanide cations. It was found that the electrical conducting properties declined with decreasing lanthanide cation size. Fortunately, all the compositions remained rather high electrical conductivities exceeding 650Ω1.cm-1 in the intermediate temperature range (600-800℃). An appreciable thermal expansion increase at high temperatures was detected for all the compositions. Decreasing the size of the lanthanide cations resulted in an increase of thermal expansion. With respect to the high electrical conductivities, the Ln0.6Sr0.4Co0.8Fe0.2O3 oxides are considered to be acceptable as mixed conducting component in composite cathode designs together with doped ceria electrolytes.  相似文献   

15.
用固相反应法合成了La0.9Sr0.1Ga0.8-xCoxMg0.2O3-δ(x=0,0.05,0.08))。XRD数据的Rietveld法精修表明其为体心正交结构,空间群Imma。掺Co量增大时,正交晶胞的晶格常数线性降低。采用直流四电极法和Hebb-Wagner极化法测定了总电导率和电子电导率。结果表明,氧离子电导率和总电导率随掺Co量增加而增大;掺Co可降低电导活化能,La0.9Sr0.1Ga0.8-xCoxMg0.2O3-δ对应x=0,0.05,0.08的活化能分别为0.978,0.739,0.489 eV。掺Co量达到0.08时,氧离子迁移数降为0.8。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号