首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
柠檬酸法制备了La0.7Ba0.15E0.15Fe0.8Co0.2O3(LBEFC,E=Sr,Ca)系列阴极材料,利用XRD、SEM对LBEFC晶体结构、微观形貌进行分析,采用四探针法测试了LBEFC的电导率。实验结果表明,1 000℃煅烧2 h,LBEFC可以形成单一的畸变钙钛矿结构,LBEFC衍射峰较LaFeO3衍射峰向右偏移,晶胞参数a、b减小,c增大。La0.7Ba0.15Sr0.15Fe0.8Co0.2O3和La0.7Ba0.15Ca0.15Fe0.8Co0.2O3晶胞体积膨胀率分别为43.5%、42.7%,晶格畸变主要发生在(200)、(211)晶面方向。在300~800℃,LBEFC电导率均大于100 S/cm,满足中温固体氧化物燃料电池阴极材料的要求。LBEFC与新型电解质Ce0.8Sm0.2O2在1 200℃下烧结5 h,没有新相生成,具有良好的相容性。  相似文献   

2.
采用Sm0.2Ce0.8O1.9(SDC)作为电解质材料,La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)作为阴极材料,以溶胶—凝胶法制备的La0.8Mg0.2Cr0.8Zn0.2O3-δ,La0.8Mg0.2Cr0.8Al0.2O3-δ,La0.8Mg0.2Cr0.8Zr0.2O3-δ粉体作为阳极材料,组装硫氧固体氧化物燃料电池。分别以硫蒸汽和二氧化硫气体为燃料气,测试电池阳极材料性能。结果表明:以硫蒸汽为燃料,La0.8Mg0.2Cr0.8Zn0.2O3-δ在750℃达到最大开路电压420 mV,此时最大功率密度为23 mW/cm2;以二氧化硫为燃料,La0.8Mg0.2Cr0.8Zn0.2O3-δ在650℃获得最大开路电压162 mV,最大功率密度为2 mW/cm2。催化效果顺序为La0.8Mg0.2Cr0.8Zn0.2O3-δ>La0.8Mg0.2Cr0.8Al0.2O3-δ>La0.8Mg0.2Cr0.8Zr0.2O3-δ。  相似文献   

3.
采用低温燃烧合成技术制备了La1-xSrxCuO0.9Fe0.1O2.5-δ(x=0.1~0.4)粉体.分别利用X射线衍射(XRD)和差热分析(DTA)技术对粉体的性能进行了表征.XRD结果表明,经800℃培烧的La0.9Sr0.1CU0.9Fe0.1O2.5-δ粉体的对称性较低,未形成钙钛矿结构,其余La1-xSrxCu0.9Fe0.1O2.5-δ(x=0.2~0.4)粉体为四方钙钛矿结构,晶体结构参数之间满足关系式a=b≈2 c.DTA结果显示,La1-xSrxCu0.9Fe0.1O2.5-δ在1000℃以下是热力学稳定的,不会发生分解反应.采用直流四电极法测试了La1-xSrxCuO0.9Fe0.1O2.5-δ试样在100~800 ℃之间的电导率.试样的电导率In(δT)与1/T之间呈很好的线性关系,说明La1-xSrxCuO0.9Fe0.1O2.5-δ在测试温度范围内服从小极化子导电机制.Sr掺杂量对试样的电导率和电导活化能有着明显的影响,当Sr掺杂量为0.3时,La1-xSrxCuO0.9Fe0.1O2.5-δ的电导率最高,电导活化能最小.  相似文献   

4.
采用溶胶-凝胶法合成固体氧化物燃料电池阴极系粉体Pr0.6-zSr0.4Co0.8Fe0.203-δ(PSCF)(z=0,0.02,0.05).使用X射线衍射(XRD)对其相结构与形貌进行了分析,结果表明,900℃焙烧后的阴极粉体Pr0.6-zSr0.4Co0.8Fe0.203-δ(z=0,0.02,0.05)为单一的钙钛矿结构.用交流阻抗法测定了PSCF-Ce0.8Sm0.2O1.9(SDC)体系的阻抗谱,得到1 000℃烧结的阴极体系对称电池在测试温度为750℃时z=0,z=0.02,z=0.05的极化电阻分别为0.041,0.040,0.034Ωcm-2.采用直流四电极法测试以电解质(SDC)为支撑体,以湿氢气作燃料的单电池(NiO-SDC/SDC/PSCF-SDC),测试温度为800℃时z=0,z=0.02,z=0.05的最高功率密度分别为527,561,555 mW/cm2.  相似文献   

5.
用固相反应法合成了La0.9Sr0.1Ga0.8-xCoxMg0.2O3-δ(x=0,0.05,0.08))。XRD数据的Rietveld法精修表明其为体心正交结构,空间群Imma。掺Co量增大时,正交晶胞的晶格常数线性降低。采用直流四电极法和Hebb-Wagner极化法测定了总电导率和电子电导率。结果表明,氧离子电导率和总电导率随掺Co量增加而增大;掺Co可降低电导活化能,La0.9Sr0.1Ga0.8-xCoxMg0.2O3-δ对应x=0,0.05,0.08的活化能分别为0.978,0.739,0.489 eV。掺Co量达到0.08时,氧离子迁移数降为0.8。  相似文献   

6.
阴极材料Ln-Sr(orCa)-Cu-O的制备及电性能   总被引:2,自引:1,他引:1  
为了降低原料成本和适于工业化生产,以混合稀土取代氧化镧经硝酸溶解后,共沉淀法分别制备了Sr、Ca掺杂阴极材料Ln-Sr(or Ca)-Cu-O(Ln为混合稀土)的前驱体,在优化条件800℃下煅烧3.5 h形成了粉体,XRD证实形成的物相为CeO2立方萤石相与钙钛矿相。当2θ在20°~30°变化时,Sr2+掺杂使Ln0.5Sr0.5CuO3-δ形成的钙钛矿结构衍射峰相对完整;当2θ在30°~45°变化时,Ca2+掺杂却使Ln0.5Ca0.5CuO3-δ钙钛矿结构衍射峰发生扭曲;而2θ在50°~60°时,Ln0.5Ca0.5CuO3-δ和Ln0.5Sr0.5CuO3-δ衍射峰发生了不同程度的偏移和裂变。直流四探针法对合成产物烧结样品的电导率测量结果表明,在相同条件下,Ln0.5Sr0.5CuO3-δ电导率大于Ln0.5Ca0.5CuO3-δ电导率,在420℃时电导率达到最大值,分别为574和559 S/cm。在中温固体氧化物燃料电池工作温度500~800℃,阴极材料电导率超过500 S/cm,满足电池阴极材料电性能的要求。  相似文献   

7.
为了降低原料成本和适于工业化生产,以混合稀土取代氧化镧经硝酸溶解后,共沉淀法分别制备了Sr、Ca掺杂阴极材料Ln-Sr(or Ca)-Cu-O(Ln为混合稀土)的前驱体,在优化条件800℃下煅烧3.5 h形成了粉体,XRD证实形成的物相为CeO2立方萤石相与钙钛矿相。当2θ在20°~30°变化时,Sr2+掺杂使Ln0.5Sr0.5CuO3-δ形成的钙钛矿结构衍射峰相对完整;当2θ在30°~45°变化时,Ca2+掺杂却使Ln0.5Ca0.5CuO3-δ钙钛矿结构衍射峰发生扭曲;而2θ在50°~60°时,Ln0.5Ca0.5CuO3-δ和Ln0.5Sr0.5CuO3-δ衍射峰发生了不同程度的偏移和裂变。直流四探针法对合成产物烧结样品的电导率测量结果表明,在相同条件下,Ln0.5Sr0.5CuO3-δ电导率大于Ln0.5Ca0.5CuO3-δ电导率,在420℃时电导率达到最大值,分别为574和559 S/cm。在中温固体氧化物燃料电池工作温度500~800℃,阴极材料电导率超过500 S/cm,满足电池阴极材料电性能的要求。  相似文献   

8.
利用溶胶凝胶-氏温燃烧法合成了(La0.95 Sr0.05)0.2 Ce0.8 O2-δ的粉体.采用XRD对其结构进行表征,结果表明,空气气氛下800℃煅烧5h制得的(La0.95Sr0.05)0.2Ce0.8O2-δ粉体为单一的立方萤石结构.不同烧结温度制备的电解质的SEM表明,在1 450℃即可制得致密的电解质.采用两端子交流阻抗谱法在400 ~800℃空气气氛中测量了电解质的电性能,电解质在600℃的电导率为0.019 S/cm.阳极支撑的单电池在中温范围具有较高的功率密度,650℃时达1.039 W/cm2.  相似文献   

9.
用溶胶-凝胶法合成了固体电解质Ce0.8Gd0.2-xYxO2-δ(x=0,0.05,0.10).用X射线衍射谱、拉曼光谱分析了样品的微观结构,用交流复阻抗谱研究了样品的电学性能.结果表明:800℃焙烧的所有样品均为具有氧缺位的单相立方萤石结构,晶胞参数随钇(Y)掺杂量增加而减小.钇掺杂量x=0.05的样品Ce0.8Gd0.15Y0.05O2-δ的电导率最高,导电活化能最小,(σ700℃=5.58×10-3S·cm-1,Eα=0.92 eV),高于未掺杂Y的Ce0.8Gd0.2O2-δ样品的电导率(σ700℃=5.38×10-3S·cm-1Eα=1.09 eV).说明适量双掺杂Y提高了Ce0.8Gd0.2-xYxO2-δ的电导率并且降低了其活化能.  相似文献   

10.
采用高温固相法制备了Sr_(1-x)Sm_xFe_(12-x)Mn_xO_(19)(x=0~0.4)。利用XRD、SEM、VSM等表征手段对锶铁氧体的晶相、形貌和磁性能进行了表征。通过XRD分析发现当掺杂量0≤x0.2时衍射峰基本没有出现杂峰,衍射峰的强度比较高,粉体为结晶度比较高的单一六方相锶铁氧体。通过SEM发现随着掺杂量的增加晶体的晶粒尺寸逐渐增大;通过VSM分析发现:随着掺杂量的增大矫顽力Hc出现先增大后减小的趋势。测试结果表明:当掺杂量在x=0.2时Sm-Mn联合取代锶铁氧体的结晶度最好,矫顽力最大Hc=33.417 emu/g。  相似文献   

11.
采用溶胶凝胶法和原位复合技术分别制备LaxSr1-xCoO3和La0.7Sr0.3CoO3/PANI复合材料阴极催化剂。通过X射线衍射(XRD)和扫描电子显微镜(SEM)对所制备催化剂进行微观结构和表面形貌的表征。采用循环伏安法(CV)对其电催化活性进行了系统研究。实验结果表明,锶掺杂量的差异导致催化剂的活性有较大区别,在磷酸盐缓冲溶液中La0.7Sr0.3CoO3/PANI催化剂表现出了良好的活性。将所制备催化剂应用于厌氧流化床微生物燃料电池(AFBMFC)阴极,结果显示,La0.7Sr0.3CoO3/PANI复合材料作阴极催化剂,其AFBMFC的最大功率密度122.81mW·m-2是La0.7Sr0.3CoO3催化剂微生物燃料电池(MFC)的1.2倍,相应开路电压达651mV。表明La0.7Sr0.3CoO3/PANI催化剂具有显著的催化活性,可作为MFC新型的阴极催化剂。  相似文献   

12.
采用溶胶-凝胶法制备了Nd0.6-xBaxSr0.4Co0.2Fe0.8O3-δ(x=0,0.05,0.10,0.15,0.20,NBSCF)粉体与电解质粉体Ce0.8Sm0.2O1.9(SDC).利用X射线衍射仪、热膨胀仪分别对材料的晶体结构和烧结陶瓷体的热膨胀系数(TEC)进行表征.以不同组分的NBSCF-30%SDC为复合阴极,以SDC为电解质,用交流阻抗法测试了550~750℃范围内对称电极的极化电阻.结果表明,合成的NBSCF粉体均形成了单相正交钙钛矿结构.随着Ba含量的增加,材料的热膨胀系数增大,复合阴极的极化电阻减小.当x=0.20时,NBSCF-30%SDC复合阴极的极化电阻最小,750℃时为0.032Ω.cm2.  相似文献   

13.
采用X射线衍射(XRD)和拉曼光谱(RS)技术调查了(Ba0.97-x La0.03Sr x)Ti0.9925O3(x=0.015-0.2)陶瓷的结构特征.结果表明:当x≤0.1时,晶体维持在四方结构,当Sr含量增加到0.2时,晶体由四方相变为伪立方相.伴随着结构相变,Sr掺杂对(Ba0.97La0.03)Ti0.9925O3陶瓷的拉曼电荷效应产生影响.  相似文献   

14.
对Sm0.5Sr0.5CoO3作为氧化铈基燃料电池阴极材料的合成与应用进行了研究.采用溶胶-凝胶法制备了晶粒尺寸为20 nm左右的Sm0.5Sr0.5CoO3超细粉,采用XRD、TEM等分析手段对粉体进行了观察和表征,并对这种复合氧化物的陶瓷烧结性能进行了初步研究和显微组织观察(SEM).以Sm0.5Sr0.5CoO3为阴极,Ce0.8Sm0.2O1.9为电解质,Ni/Ce0.8Sm0.2O1.9金属陶瓷为阳极制成单体氢-氧燃料电池,在600 ℃下工作,最大输出功率密度为260 mW/cm2,此时工作电压为0.6 V,电流密度为430 mA/cm2.研究的结果表明,Sm0.5Sr0.5CoO3作为阴极的氧化铈基燃料电池具有较好的输出性能.  相似文献   

15.
采用溶胶凝胶法制备(La_(0.6)Sr_(0.4))_xCo_(0.2)Fe_(0.8)O_(3-δ)(x=0.95,0.97,1.00,1.03,1.05)系列阴极材料。采用X射线衍射(XRD)和扫描电子显微镜(SEM)对其结构和微观形貌进行表征,交流阻抗谱(EIS)测试样品的导电性能。结果表明,样品经750℃烧结3h形成斜方钙钛矿结构,A位非化学计量可明显降低阴极的极化电阻。在700℃时,x=1.05的样品界面极化电阻为0.086 3Ω·cm2,相比x=1.00的样品降低了50%,(La_(0.6)Sr_(0.4))_xCo_(0.2)Fe_(0.8)O_(3-δ)材料是一种电化学性能较为优良的中温固体氧化物燃料电池阴极材料。  相似文献   

16.
采用燃烧合成的方法—柠檬酸-硝酸盐法合成中温固体氧化物燃料电池的电解质及电极材料的初始粉末.电池的电解质材料是Ce0.8Gd0.2O1.95(GDC),阴极材料是La0.7Sr0.3Co0.3Fe0.7O3(LSCF),还原前的阳极材料是掺Ce0.8Sm0.2O1.9(SDC)的NiO.借助XRD和TG-DTA等测试手段对材料的晶体结构和反应过程进行了分析.实验结果表明,柠檬酸-硝酸盐燃烧合成法能制备纳米级的电解质及电极材料的初始粉末,燃烧合成中pH值的大小和合成后的烧结温度能很大的影响晶粒的成长和相的生成.  相似文献   

17.
通过共沉淀法制备得到La_(0.8)M_(0.2)CrO_3(M=Ca,Mg,Sr)作为阳极催化剂,分别以钇稳定氧化锆(YSZ)粉体和La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF)粉体作为硫—氧燃料电池的电解质材料和阴极材料。发现在700~800℃时,La_(0.8)Ca_(0.2)CrO_3对硫—氧燃料电池具有明显的催化效果,测得800℃时单电池开路电压为560 mV。La_(0.8)M_(0.2)CrO_3(M=Ca,Mg,Sr)作为硫—氧燃料电池的阳极催化剂,催化效果为:La_(0.8)Ca_(0.2)CrO_3La_(0.8)Mg_(0.2)CrO_3La_(0.8)Sr_(0.2)CrO_3。  相似文献   

18.
采用尿素-硝酸盐燃烧法在600~800℃下制备了较高纯度无杂质相的碱土掺杂磷灰石型La9.33Mx(SiO4)6O2+δ(M为Sr,Ca,Mg)电解质.通过X射线衍射、扫描电镜和交流阻抗测试,对样品的晶体结构、表面微观形貌及电导性能进行了研究.结果表明,燃烧合成的电解质粉体La9.33(SiO4)6O2(LSO)具有p63/m磷灰石型晶体结构;LSO烧结体的微观形貌随x值的不同而出现了细微变化;LSO烧结体具有良好的电阻可逆性和稳定性.适当的掺杂量能有效提高LSO的离子电导率,最佳掺杂浓度为0.2.相同掺杂量下,三种碱土金属阳离子掺杂对电导性能也有一定的影响,随着离子半径的增大,掺杂效果越来越好.  相似文献   

19.
提出一种低成本高效率的化学方法,用以制备钙钛矿结构固体氧化物燃料电池(SOFC)阴极材料La0.8Sr0.2Co0.5Fe0.5O3-8(LSCF).该方法与传统方法不同,采用非螯合聚合物-聚乙烯醇(PVA,Polvinyl alcohol)作为阳离子的载体,形成含有La3+,Sr2+,Co2+,Fe3+4种金属阳离子和非螯合聚合物的均匀溶胶,干燥生成固体凝胶状前驱体.进行热重(TG)分析和傅立叶红外(FT-IR)分析,在此基础上制定了一系列前驱体凝胶煅烧工艺制度,确定了最佳煅烧温度750℃,获得了钙钛矿型LSCF阴极材料.对LSCF粉末进行了X射线衍射(XRD)相分析,证实了所得粉末材料具有钙钛矿结构.通过扫描电子显微镜(SEM)对粉体进行微观形貌结构观察,证实制得的LSCF粉为纳米级,但存在团聚.采用直流伏安法检测其导电性能,证实以其作为阴极材料,在中温SOFC的工作温度下具有良好的混合导电性能.  相似文献   

20.
用溶胶-凝胶法制备了Fe基非贵金属钙钛矿系列化合物.TG-DTA分析了晶相转化过程,XRD研究了其晶体结构.结果表明:非贵金属掺入后并没有改变钙钛矿化合物的基本结构,在取值范围内均可形成具有ABO3结构的复合氧化物,钙钛矿晶相生成温度在650~750℃.Sr掺入后,La1-xSrxFeO3体系随着x值的增大主峰(110)晶面的衍射布拉格角向着高角度方向微小位移,形成多相复合,不仅生成La0.8Sr0.2FeO3,而且Sr可以完全取代La形成SrFeO3-λ相.La1-x-ySrxCeyFeO3晶相中出现少量的分散较好的CeO2晶相,La0.8Sr0.1Ce0.1FeO3主要物相为LaFeO3,SrFeO3-λ,La0.8Sr0.2FeO3和CeO2.红外分析表明:B位元素调变时,主峰晶面的衍射布拉格角向高角度方向改变,晶胞参数减小,平均离子半径减小,Fe—O键先增强后有微弱减弱,总的趋势是增强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号