首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过扫描电镜/能谱、金相显微镜分析及力学性能测试,研究了Mg_2Si对6061铝合金热处理前后组织和力学性能的影响。结果表明:铸态组织中,Mg_2Si主要以短棒状和长条状的结晶相的形式存在,随着Mg、Si元素的增多,长条状的Mg_2Si结晶相在晶界处连续分布;Mg_2Si含量低于1.80%时,基本能在均匀化处理中完全回溶,超过1.80%时,Mg_2Si形貌发生球化转变;当Mg_2Si含量为2.65%时,短棒状的Mg_2Si相比圆点状的Mg_2Si相造成更多Si的富集,在晶界处形成单质Si相;Mg_2Si含量为1.58%时,合金T6态具有最优的力学性能,抗拉强度、屈服强度、延伸率分别为σ_b=348 MPa,σ_(0.2)=310 MPa,δ=3.0%;Mg_2Si含量的提高并不能进一步提升合金的强度,延伸率反而随之下降。  相似文献   

2.
对汽车用非热处理型高延性压铸AlMg_4Fe_2合金微观组织和力学性能进行了研究,结果表明AlMg_4Fe_2压铸合金组织包括:原始枝晶、颗粒状的α-Al晶粒、Al-Mg共晶区和细小的针状Al_3Fe或汉字状Al_6Fe共晶体,未发现粗大的β-AlFeSi相,可见这样的组织结构有利于提高合金的力学强度和延伸率。通过控制合金Mg含量分别为4.5%和6.5%时,发现Mg含量严重影响屈服强度和延伸率,Mg含量越高,屈服强度越高而延伸率越低。当Mg含量低至4.5%时,合金屈服强度低至123MPa,但延伸率高达10.6%;当Mg含量高达6.5%时,合金屈服强度剧增到152MPa,而延伸率下降至7.1%,相比于Mg含量为4.5%的合金,屈服强增加了23%,但延伸率降低了33%。  相似文献   

3.
采用力学性能测试、X射线衍射物相分析、SEM观察研究了时效对固溶-冷拉处理后的Sn、Bi微合金化的新型无铅易切削6xxx系Al-Mg—Si合金棒材微观组织和力学性能影响,并比较了该合金与6262合金的切削性能。结果表明:其最佳的时效热处理工艺为170℃/10h,在此工艺磐件下,抗拉强度为348MPa,屈服强度为339MPa,延伸率为12.5%。峰时效态合金的物相组成为Al基体,主要强化相Mg2Si,低熔点物质Mg2Sn、Mg3Bi2和Bi及少量的CuAl2相。切削性能试验表明,用Sn和Bi微合金化6xxxAl-Mg—Si合金的切削性能比Pb和Bi微合金化的传统6262合金稍好。  相似文献   

4.
采用光学显微镜(OM),扫描电镜(SEM),能谱仪(EDS),X射线衍射(XRD)分析以及拉伸、全浸腐蚀等实验手段,研究了Mg-x Sn-2Al-1.5Zn-0.8Si(x=3,5,8;%,质量分数,下同)合金铸态下的组织和性能。结果表明:Sn元素与基体Mg生成Mg2Sn相,该相能阻断Mg2Si相的枝晶生长,并对铸态组织具有细化作用;随着Sn含量的增加,细化作用逐渐加强,但同时析出的Mg2Sn相增多,组织的均匀性下降。随着Sn的增加,合金延伸率逐渐减小,而抗拉强度呈现先升高后降低的趋势,过多的Sn对合金力学性能不利,Sn含量在5%时强韧性达到较佳配合;Sn含量为5%的合金耐高温性能较好,Sn含量为3%时耐高温性能较差。合金在腐蚀过程中,多数金属间化合物(Mg2Sn,Mg2(Si,Sn)和Mg2Si等)充当阴极相,Mg基体则充当阳极相,二者构成电偶腐蚀;Sn的加入使合金的耐蚀性能下降,特别是Sn含量超过5%时,耐腐蚀性能下降显著,腐蚀形貌特征从点蚀变为坑蚀。  相似文献   

5.
通过改善铸态镁合金制备工艺,得到一种组织均匀、性能优异的Mg-6Sn-3Al-1Zn合金,合金抗拉强度、屈服强度、延伸率分别达到219MPa、82MPa、16%,晶粒尺寸为133.35μm。  相似文献   

6.
用金属Al粉、Cu粉、Mg粉和Al-Si粉为原料,采用液相烧结法制备Cu含量(质量分数,下同)为0~6.0%的AlCuMgSi合金,研究Cu含量对AlCuMgSi合金组织与力学性能的影响,采用国外的Al-3.8Cu-1.0Mg-0.75Si粉末为原料,用相同的工艺制备Al-3.8Cu-1.0Mg-0.75Si合金作为性能对比试样。结果表明:在铝合金中添加Cu元素后,组织致密均匀,密度、硬度和抗拉强度等均显著提高。当Cu含量为4.0%时材料的性能最优,密度为2.72g/cm3,致密度达到98.9%,硬度HB为64,抗拉强度为207MPa,伸长率为2.1%,与采用国外的Al-3.8Cu-1.0Mg-0.75Si粉末制备的材料性能相当。  相似文献   

7.
研究了Cr含量对TC4合金显微结构和性能的影响。结果表明,Cr元素能降低TC4合金的β相转变温度,当Cr含量低于3%时,TC4合金具有双态组织,Cr含量高于3%时,TC4合金中相转变完全,α相连续地分布在β相的晶界处;不同Cr含量条件下TC4合金中均存在α相和β相,随着Cr含量增多,TC4合金中β相数量明显增加;随着Cr含量增大,TC4合金的拉伸强度和屈服强度均逐渐升高,其延伸率逐渐降低,当Cr含量为4%时,TC4合金拉伸强度和屈服强度均具有最大值,分别为1 068 MPa和1 697 MPa,其延伸率具有最小值,为9.94%。  相似文献   

8.
C含量对Fe-Cu-C合金性能的影响   总被引:1,自引:0,他引:1  
研究了碳含量对Fe-Cu-C合金性能的影响.结果表明:碳含量低于1.2%时,随着碳含量的增加,材料的表观硬度增加,强度先增后减,在含碳0.8%时综合性能最佳,其表观硬度HRB达74.7,强度为487.30MPa,延伸率达1.8%.烧结后Fe-Cu-C材料的轴向膨胀率随碳含量的增加逐渐减少.经淬火 回火处理后的Fe-2Cu-0.8C试样性能为:硬度HRC 22.5,强度630.20 MPa,延伸率1.4%;较之于烧结态,强度、硬度提高明显,但延伸率稍有下降.  相似文献   

9.
采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、力学性能测试、剥落腐蚀、晶间腐蚀、和电化学工作站等实验手段,研究了不同Mg/Si(原子分数比,下同)对Al-Mg-Si铸造合金的力学性能、腐蚀性能及微观组织的影响。研究表明,Mg/Si为1.1时合金具有最佳的力学性能和耐蚀性(抗拉强度和屈服强度分别为275和253MPa,晶间腐蚀深度为73.76μm);Mg/Si在1.1~3.1之间,强度随Mg/Si升高而下降,Mg/Si增大到3.1时,抗拉强度仅为181MPa,延伸率随Mg/Si升高而增加,但变化幅度不大;晶间腐蚀敏感度大体上随Mg/Si减小而升高,但在Mg/Si为1.1时耐晶间腐蚀性能有显著的提高;剥落腐蚀敏感度无太大差异,均为PA等级,耐剥落腐蚀性能良好。T6热处理态晶内析出相析出密度随Mg/Si增加发生变化,低Mg/Si的合金1的析出密度高于高Mg/Si的合金3,高分辨结果显示晶内析出相为强化相,并且在晶界处均未观察到明显析出相和无沉淀析出带(PFZ)。  相似文献   

10.
研究了喷射成形Al—8.5Fe—1.1V—1.9Si耐热铝合金组织结构的演变规律,测试了挤压态合金在室温及高温条件下的力学性能。与铸态组织特征相比较,喷射成形工艺有效地消除了铸态合金中粗大的富Fe析出相,获得了细小均匀的组织结构。利用OM,SEM,TEM,XRD等材料分析测试手段,探索了材料中可能的组织演变过程及规律,结果表明:喷射成形制备的Al—Fe—V—Si耐热铝合金中,形成了大量的弥散分布的球状相,有效的保证了合金在室温及高温下的力学性能。室温下,合金的抗拉强度可以达到445MPa,屈服强度也达到了398MPa,延伸率为16%;在315℃,合金的抗拉强度和屈服强度分别为229和209MPa。  相似文献   

11.
采用力学性能测试、X射线衍射物相分析、SEM观察研究了时效对固溶-冷拉处理后的Sn、Bi微合金化的新型无铅易切削6xxx系Al-Mg-Si合金棒材微观组织和力学性能影响,并比较了该合金与6262合金的切削性能.结果表明:其最佳的时效热处理工艺为170 ℃/10 h,在此工艺条件下,抗拉强度为348 MPa,屈服强度为339 MPa,延伸率为12.5%.峰时效态合金的物相组成为Al基体,主要强化相Mg2Si,低熔点物质Mg2Sn、Mg3Bi2和Bi及少量的CuAl2相.切削性能试验表明,用Sn和Bi微合金化6xxxAl-Mg-Si合金的切削性能比Pb和Bi微合金化的传统6262合金稍好.  相似文献   

12.
研究了加工态丝材和退火态丝材所加工的Ti45Nb合金铆钉的组织及性能。冷拉拔加工态钛铌丝材抗拉强度为680 MPa,剪切强度为390 MPa,且塑性良好,延伸率A为20%,断面收缩率Z为80%,具有良好加工性能。加工态丝材经退火后,组织实现完全再结晶,抗拉强度降低至550 MPa,塑性有所提高,延伸率A达到30%。两种状态丝材经冷镦加工成铆钉后,与丝材相比,剪切强度均增高,这与冷镦加工造成加工硬化有关;而对铆钉进行退火后,剪切强度均降低,且加工态丝材镦制的铆钉的剪切性能一致性优于退火态丝材镦制的铆钉。  相似文献   

13.
新型Al-Mg-Si-Cu铝合金热处理工艺研究   总被引:1,自引:0,他引:1  
通过力学性能测定以及金相显微组织观察,对一种新型Al-Mg-Si-Cu铝合金(Al-1.2%Mg—0.9%Si—0.6%Cu)的热处理工艺进行了研究。结果表明:该合金较为理想的热处理制度是550℃,2h固溶处理后水淬,人工时效制度为双级时效185℃,2h 200℃/1h。热处理后,试样抗拉强度可达到340MPa以上,硬度可达到105HB以上,延伸率在12%以上,析出相呈细小弥散状分布,对合金有很高的强化效果。  相似文献   

14.
马少博  贺飞羽  胡文鑫  何伟  刘峰 《稀土》2023,(1):190-197
利用光学显微镜、扫描电镜、X射线衍射仪、室温拉伸试验机等研究了Ce和Cu复合合金化对A356.2铝合金组织和力学性能的影响。结果表明,在单独添加Ce时,随着Ce含量的增加,A356.2铝合金中的α-Al相得到不同程度的细化,在添加0.1%的Ce时,合金中α-Al相的二次枝晶臂间距最小为29.6μm,其抗拉强度最佳,为310.8 MPa。因此选用0.1%Ce和不同含量的Cu来研究其对A356.2合金组织和力学性能的影响,随着Cu含量增加,A356.2合金中α-Al相得到细化,共晶Si得到有效的变质,并且出现新的Al2Cu和Al8Cu4Ce相,起到固溶强化和弥散强化的作用,提高了合金的强度。在添加1.5%Cu和0.1%的Ce后,A356.2铝合金力学性能最好,抗拉强度为350.75 MPa,屈服强度为273.80 MPa,延伸率为6.52%。  相似文献   

15.
对熔模精铸TG6合金进行了热等静压和退火热处理试验,研究了其铸态、热等静压态和退火态的显微组织和力学性能。结果表明,该合金在铸态下为晶粒粗大的魏氏组织,组织中存在缩松缺陷,合金抗拉强度为871.3MPa,塑性0.8%,合金组织中的疏松缺陷为断裂的裂纹起始源;通过热等静压后该合金抗拉强度及伸长率提高到950.7 MPa和3.7%;经过750℃退火热处理后,组织中β板条部分溶解,并析出(TiZr)6Si3硅化物,合金的室温拉伸延伸率提高到5%以上,强度相对于热等静压未发生明显改变,断口表现为解理断裂。  相似文献   

16.
文章以添加不同Cu含量(wt.%)(1.4%~2.6%)的Al-Zn-Mg-xCu-Ce-Zr合金为研究对象,通过OM、TEM以及室温拉伸、剥落腐蚀、电化学腐蚀等实验,研究Cu元素对铝合金组织及性能的影响规律。结果表明,随着Cu含量的增加,合金晶内析出相的平均尺寸先减小后增大,合金的力学性能呈先升高后降低的趋势,抗腐蚀性能逐渐降低。当Cu含量为2.2%时,合金晶内析出相的平均尺寸最小且表现出最高的力学性能;当Cu含量为1.4%时,合金表现出最佳的综合性能,抗拉强度、屈服强度和延伸率分别为682MPa、605MPa和13.8%;腐蚀电流密度为1.496×10-5A/cm2。  相似文献   

17.
5182合金成分优化研究   总被引:1,自引:0,他引:1  
孟繁平 《铝加工》2015,(3):30-34
采用正交试验方法设计了不同成分的5182合金,通过研究其显微组织和性能,对5182合金成分进行优化。结果表明,在5182铝合金中主要存在有Mg2Si、Mg2Al3和(Fe Mn)Al6三种析出相,当5182铝合金中Mg含量达到4.5%、Fe为0.35%、Mn含量为0.35%时,其性能最佳。  相似文献   

18.
共晶合金具有良好的激光焊接性能,为提高电子封装盖板用Al-12Si合金的强度并保持良好的热物理性能,采用喷射沉积与热压烧结技术制备Al-12Si合金,研究添加0.6% Mg对合金微观组织、力学性能和热物理性能的影响。结果表明,喷射沉积/热压烧结Al-12Si合金中Si相呈近球形颗粒,平均直径为(4.5±0.2)μm,均匀分布于Al基体中;添加Mg未对Si相尺寸和形貌产生显著影响,但是在Al基体中形成Mg2Si相。相对于Al-12Si合金,Al-12Si-0.6Mg合金的热导率降幅仅为4.2%,但是抗拉强度从154.1 MPa提高到190.1 MPa,增幅达到23.4%,该强度改善主要归因于固溶强化和析出强化作用。   相似文献   

19.
《铝加工》2015,(1)
欧洲专利??0918096
  本发明推荐一种含Si≤1.4%、Fe≤0.8%、Mn0.1~1.6%、Mg≤5.0%、Ti≤0.2%、Zn≤0.1%、其余每一种杂质含量≤0.02%(总量≤0.2%)的铝合金。该合金还可添加0.05~0.3%V,以提高铸造性能(无铸造缺陷)及合金的韧性,并通过适当选择热处理温度和时间来得到良好的强度和塑性性能。如含Si1.26%、Mn0.87%、Mg4.31%、Ti0.15%、V≤0.01%的铝合金铸态(压力铸造)下的σb=244MPa,σ0.2=136?MPa,δ=6.5%,并且在铸锭中形成裂纹。而含0.078%V的同种合金的σb=262MPa、σ0.2=139MPa、δ=9.9%,且铸锭中无裂纹。  相似文献   

20.
利用真空自耗电弧熔炼(VAR)制备了一种Zr、Hf质量比为1∶1的新型ZrHf合金,研究了该合金的显微组织、力学性能及其在沸腾硝酸溶液中的耐蚀性能。结果表明,该合金由密排六方结构相构成,其晶格常数介于α-Zr与α-Hf之间;在固溶强化机制下,该合金具有较高的室温屈服强度、抗拉强度和延伸率,分别达到641 MPa、714 MPa和51%。该ZrHf合金在6 mol/L的沸腾硝酸溶液中腐蚀192 h后,腐蚀速率低于0.002 mm/a,具有高强度、耐腐蚀的优异性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号