首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
窄带隙共轭聚合物材料是新型太阳能电池的研究热点。按窄带隙聚合物材料的结构分类,简要总结了不同种类窄带隙共轭聚合物类太阳能电池材料的设计、合成及器件性能,并指出了该研究领域目前还存在的问题和今后发展的方向。  相似文献   

2.
有机太阳能电池具有成本低、质量轻、柔韧性好等优点,提高有机太阳能电池的光电转化率和降低成本,开发新型的有机太阳能电池材料一直是研究的重点。文中简要介绍了有机太阳能电池的特点、工作原理及发展趋势,提出了含氟共轭聚合物在有机太阳能电池给体材料中的研究,重点讨论了含氟苯并噻二唑,含氟苯并三唑及1,5-并噻吩衍生物的研究。同时,讨论了含氟物质在界面修饰材料中的应用。最后,对含氟共轭聚合物在有机太阳能电池未来的发展做出了展望。  相似文献   

3.
相比硅太阳能电池,无机纳米晶/共轭聚合物太阳能电池因其兼备有机/无机杂化的优点,而近年来一直是国内外广泛关注的热点之一.文中对目前该种太阳能电池光敏层的各种微观形貌、制备方法及研究进展进行了综述.详细介绍了无机纳米晶/共轭聚合物光敏层的三种制备方法,即物理共混法、化学键合式共混法和原位法.同时着重关注了无机纳米晶/共轭...  相似文献   

4.
聚噻吩及其衍生物是一类重要的有机共轭高分子材料,不仅具有良好的环境稳定性,而且带隙窄,是理想的聚合物光伏材料。分类介绍了有机噻吩类衍生物在聚合物太阳能电池中的研究进展及需要改进的地方,如开路电压、短路电流及能量转换效率仍需要大幅度提高才能应用到生活中。展望了聚合物太阳能电池的发展前景。  相似文献   

5.
共轭微孔聚合物(CMPs)有制作方法简单多样、比表面积大、物理化学稳定性好、结构形貌可调等特点,因此受到广泛关注。近年来,共轭微孔聚合物的多种合成方法和新应用成为了研究热点,CMPs主要用途包括超级电容器、非均相催化、化学传感器、太阳能界面蒸发、抑菌材料、阻燃材料。重点介绍了共轭微孔聚合物的多种合成方法以及CMPs的多种应用领域,并且对目前合成CMPs的难点进行总结。  相似文献   

6.
硅有机/无机杂化太阳能电池结合了硅材料载流子迁移率高的优势,以及有机物的材料易合成、光电特性可调的特点,具有制备工艺简单、成本低以及柔性等适合未来应用发展的潜力特征。在介绍硅基杂化太阳能电池的基本结构和工作原理的基础上,从硅基材料的优化、有机导电聚合物PEDOT∶PSS改性、硅与PEDOT∶PSS界面修饰和结构优化,以及杂化太阳能电池的稳定性4个方面概况了近期的研究进展,重点针对Si/PEDOT∶PSS杂化太阳能电池结构优化及性能改进方面的最新研究热点,分析了当前硅基杂化电池发展的问题,指出了Si/PEDOT∶PSS杂化太阳能电池的发展方向。  相似文献   

7.
有机受供体聚合物薄膜太阳能电池的活性层是由共轭材料构成。其中含氟聚合物材料因氟原子的存在,有着优异的物理化学性质而被应用到有机太阳能电池的功能材料中,其不仅能提高有机太阳能电池的光电转化效率,还能增强电池的稳定性。目前已报道的基于含F聚合物的光伏器件(organic photovoltaic device,OPV)光电转化效率(power conversion efficiency,PCE)最高已达到12%,应用前景巨大。综述了3类受体单元上含F有机聚合物供体材料近几年的研究进展,并简要分析了F原子的个数以及所在区域位置的不同对器件性能的影响。最后对含氟共轭聚合物在有机太阳能电池未来的发展做出了展望。  相似文献   

8.
聚合物太阳能电池作为一种新型的清洁能源,因其具有质轻、柔性、可穿戴、与环境兼容等突出优势而备受各国政府、企业和科研人员的重视。经过三十多年的发展,聚合物太阳能电池的能量转换效率已经突破10%,体现出良好的应用前景。聚合物光伏电池效率的提高不仅归功于对器件光物理过程的认识,还取决于高性能给、受体材料的合成和器件结构的调控优化。为了梳理近年来聚合物光伏电池所取得的研究进展,文中将从聚合物光伏器件的结构出发,综述活性层形貌调控、界面修饰以及器件构型等方面的研究进展。最后对聚合物光伏器件的发展趋势进行了展望。  相似文献   

9.
简介了聚丙烯酰胺及分散聚合,简要说明了分散聚合与沉淀聚合的区别是凝聚与沉淀。按加入沉淀剂的种类将分散聚合分为4大类——醇/水、盐/水、聚合物/水、混合体系。分别介绍了醇溶解度参数及醇水比、不同无机盐离子、水溶性聚合物类分子量和疏水性对体系的影响,液滴形成过程图的情况,以及分散聚合体系中各类介质、稳定剂和引发剂等对聚合过程的影响。  相似文献   

10.
经过十多年的发展,钙钛矿太阳能电池(PSCs)迅速实现了能量转换效率(PCE)从3.8%提高到25.7%的突破,在新一代光伏产业中具有显著的竞争力。钙钛矿太阳能电池的蓬勃发展不仅源于钙钛矿材料具有高光吸收系数、优异的载流子迁移率和可调节的直接带隙,还源于其简便且成本低廉的制造工艺。但是钙钛矿电池内部的缺陷问题,特别是钙钛矿层与底层界面处的缺陷是限制钙钛矿电池效率与稳定性进一步提升的一个瓶颈。通过有效的界面修饰,一方面可以提高钙钛矿的效率,另一方面可以提高器件的稳定性。本文从界面工程对钙钛矿性能的影响出发,着重介绍了埋底界面的修饰工作对钙钛矿电池效率与稳定性的影响,包含电子传输层(ETL)/钙钛矿界面与空穴传输层(HTL)/钙钛矿界面这两部分,通过对这两类埋底界面的有效改性修饰,器件的效率与稳定性显著提高。通过对比分析了各种材料与实验方法对钙钛矿器件整体性能和稳定性的影响,探索了一条有效改善器件性能的路径。最后,本文还对钙钛矿太阳能电池的前景进行了展望。  相似文献   

11.
Polymer solar cells (PSCs) have attracted great attention in recent years because of their advantages of easy fabrication, low cost, light weight, and potential for flexible devices. However, the power conversion efficiency (PCE) of the PSCs needs to be improved for future commercial applications. Factors limiting the PCE of the PSCs include the low exploitation of sunlight due to the narrow absorption band of conjugated polymers, and the low charge‐transport efficiency in the devices due to the lower charge‐carrier mobility of the polymer photovoltaic materials. In this Research News article, recent progress in new conjugated polymer photovoltaic materials fabricated by our group and others is reviewed, including polythiophene (PT) and poly(thienylene vinylene) derivatives with conjugated side chains for a broad absorption band, crosslinked PT derivatives with conjugated bridges for higher hole mobility, and low‐bandgap donor–acceptor copolymers for broad, red‐shifted absorption to match the solar spectrum.  相似文献   

12.
All‐polymer solar cells (all‐PSCs) based on n‐ and p‐type polymers have emerged as promising alternatives to fullerene‐based solar cells due to their unique advantages such as good chemical and electronic adjustability, and better thermal and photochemical stabilities. Rapid advances have been made in the development of n‐type polymers consisting of various electron acceptor units for all‐PSCs. So far, more than 200 n‐type polymer acceptors have been reported. In the last seven years, the power conversion efficiency (PCE) of all‐PSCs rapidly increased and has now surpassed 10%, meaning they are approaching the performance of state‐of‐the‐art solar cells using fullerene derivatives as acceptors. This review discusses the design criteria, synthesis, and structure–property relationships of n‐type polymers that have been used in all‐PSCs. Additionally, it highlights the recent progress toward photovoltaic performance enhancement of binary, ternary, and tandem all‐PSCs. Finally, the challenges and prospects for further development of all‐PSCs are briefly considered.  相似文献   

13.
All‐polymer solar cells (all‐PSCs) have attracted immense attention in recent years due to their advantages of tunable absorption spectra and electronic energy levels for both donor and acceptor polymers, as well as their superior thermal and mechanical stability. The exploration of the novel n‐type conjugated polymers (CPs), especially based on aromatic diimide (ADI), plays a vital role in the further improvement of power conversion efficiency (PCE) of all‐PSCs. Here, recent progress in structure modification of ADIs including naphthalene diimide (NDI), perylene diimide (PDI), and corresponding derivatives is reviewed, and the structure–property relationships of ADI‐based CPs are revealed.  相似文献   

14.
Solution processed single junction polymer solar cells (PSCs) have been developed from less than 1% power conversion efficiency (PCE) to beyond 9% PCE in the last decade. The significant efficiency improvement comes from progress in both rational design of donor polymers and innovation of device architectures. Among all the novel high efficient donor polymers, PTB7 stands out as the most widely used one for solar cell studies. Herein the recent development of PTB7 solar cells is reviewed. Detailed discussion of basic property, structure property relationship, morphology study, interfacial engineering, and inorganic nanomaterials incorporation is provided. Possible future directions for further increasing the performance of PTB7 solar cells are discussed.  相似文献   

15.
Hybrid nanocrystal/polymer bulk heterojunction (BHJ) solar cells consisting of colloidal inorganic semiconductor nanocrystals as electron acceptors and conjugated polymers as electron donors have been extensively investigated in the past few decades, which take advantage of the strongpoints of the inorganic semiconductor nanocrystals and the conjugated polymers. Currently, power conversion efficiency over 3% for the hybrid nanocrystal/polymer BHJ solar cells has been achieved. Although the development of hybrid nanocrystal/polymer BHJ solar cells lacks behind the international level, great progress in this research field has been made in China. In this article, we first review the general fabrication techniques and general working principles of hybrid nanocrystal/polymer BHJ solar cells. Secondly, we highlight the international and national developments of hybrid nanocrystal/polymer BHJ solar cells based on different types of semiconductor nanocrystals and conjugated polymers. Finally, we give a future outlook for the hybrid nanocrystal/polymer BHJ solar cells in the worldwide.  相似文献   

16.
This Progress Report highlights recent advances in polymer solar cells with special attention focused on the recent rapid‐growing progress in methods that use a thin layer of alcohol/water‐soluble conjugated polymers as key component to obtain optimized device performance, but also discusses novel materials and device architectures made by major prestigious institutions in this field. We anticipate that due to drastic improvements in efficiency and easy utilization, this method opens up new opportunities for PSCs from various material systems to improve towards 10% efficiency, and many novel device structures will emerge as suitable architectures for developing the ideal roll‐to‐roll type processing of polymer‐based solar cells.  相似文献   

17.
Perovskite solar cells (PSCs) and organic solar cells (OSCs) are promising renewable light‐harvesting technologies with high performance, but the utilization of hazardous dopants and high boiling additives is harmful to all forms of life and the environment. Herein, new multirole π‐conjugated polymers (P1–P3) are developed via a rational design approach through theoretical hindsight, further successfully subjecting them into dopant‐free PSCs as hole‐transporting materials and additive‐free OSCs as photoactive donors, respectively. Especially, P3‐based PSCs and OSCs not only show high power conversion efficiencies of 17.28% and 8.26%, but also display an excellent ambient stability up to 30 d (for PSCs only), owing to their inherent superior optoelectronic properties in their pristine form. Overall, the rational approach promises to support the development of environmentally and economically sustainable PSCs and OSCs.  相似文献   

18.
Organic n‐type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene‐based molecules, and n‐type conjugated polymers) are demonstrated as promising electron transport layers (ETLs) in inverted perovskite solar cells (p–i–n PSCs), because these materials have several advantages such as easy synthesis and purification, tunable frontier molecular orbitals, decent electron mobility, low cost, good solubility in different organic solvents, and reasonable chemical/thermal stability. Considering these positive factors, approaches toward achieving effective p–i–n PSCs with these organic materials as ETLs are highlighted in this Review. Moreover, organic structures, electron transport properties, working function of electrodes caused by ETLs, and key relevant parameters (PCE and stability) of p–i–n PSCs are presented. Hopefully, this Review will provide fundamental guidance for future development of new organic n‐type materials as ETLs for more efficient p–i–n PSCs.  相似文献   

19.
The development of conjugated alternating donor–acceptor (D–A) copolymers with various electron‐rich and electron‐deficient units in polymer backbones has boosted the power conversion efficiency (PCE) over 17% for polymer solar cells (PSCs) over the past two decades. However, further enhancements in PCEs for PSCs are still imperative to compensate their imperfect stability for fulfilling practical applications. Meanwhile development of these alternating D–A copolymers is highly demanding in creative design and syntheses of novel D and/or A monomers. In this regard, when being possible to adopt an existing monomer unit as a third component from its libraries, either a D′ unit or an A′ moiety, to the parent D–A type polymer backbones to afford conjugated D–A terpolymers, it will give a facile and cost‐effective method to improve their light absorption and tune energy levels and also interchain packing synergistically. Moreover, the rationally controlled stoichiometry for these components in such terpolymers also provides access for further fine‐tuning these factors, thus resulting in high‐performance PSCs. Herein, based on their unique features, the recent progress of conjugated D–A terpolymers for efficient PSCs is reviewed and it is discussed how these factors influence their photovoltaic performance, for providing useful guidelines to design new terpolymers toward high‐efficiency PSCs.  相似文献   

20.
All‐polymer solar cells (all‐PSCs) that contain both p‐type and n‐type polymeric materials blended together as light‐absorption layers have attracted much attention, since the blend of a polymeric donor and acceptor should present superior photochemical, thermal, and mechanical stability to those of small molecular‐based organic solar cells. In this work, the interfacial stability is studied by using highly stable all‐polymer solar cell as a platform. It is found that the thermally deposited metal electrode atoms can diffuse into the active layer during device storage, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion of metal atoms can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials, or a tandem device structure. Learning from this, homojunction tandem all‐PSCs are successfully developed that simultaneously exhibit a record power conversion efficiency over 11% and remarkable stability with efficiency retaining 93% of the initial value after thermally aging at 80 °C for 1000 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号