首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
一种基于核的快速可能性聚类算法   总被引:1,自引:1,他引:0       下载免费PDF全文
传统的快速聚类算法大多基于模糊C均值算法(Fuzzy C-means,FCM),而FCM对初始聚类中心敏感,对噪音数据敏感并且容易收敛到局部极小值,因而聚类准确率不高。可能性C-均值聚类较好地解决了FCM对噪声敏感的问题,但容易产生一致性聚类。将FCM和可能性C-均值聚类结合的聚类算法较好地解决了一致性聚类问题。为进一步提高算法收敛速度和鲁棒性,提出一种基于核的快速可能性聚类算法。该方法引入核聚类的思想,同时使用样本方差对目标函数中参数η进行优化。标准数据集和人造数据集的实验结果表明这种基于核的快速可能性聚类算法提高了算法的聚类准确率,加快了收敛速度。  相似文献   

2.
半监督的改进K-均值聚类算法   总被引:4,自引:1,他引:3       下载免费PDF全文
K-均值聚类算法必须事先获取聚类数目,并且随机地选取聚类初始中心会造成聚类结果不稳定,容易在获得一个局部最优值时终止。提出了一种基于半监督学习理论的改进K-均值聚类算法,利用少量标签数据建立图的最小生成树并迭代分裂获取K-均值聚类算法所需要的聚类数和初始聚类中心。在IRIS数据集上的实验表明,尽管随机样本构造的生成树不同,聚类中心也不同,但聚类是一致且稳定的,迭代的次数较少,验证了该文算法的有效性。  相似文献   

3.
基于核方法的并行模糊聚类算法   总被引:1,自引:0,他引:1  
介绍并分析了模糊C-均值聚类算法、基于核方法的模糊C-均值聚类算法以及硬聚类算法.将硬聚类算法和模糊聚类算法结合起来,利用硬聚类算法初始化聚类中心,有效的减少模糊聚类算法的迭代次数.针对海量数据处理问题,将改进后的算法并行化,有效地提高了数据处理速度和效率,并在分布式互联PC环境下进行了性能测试.测试结果表明,基于核方法的并行模糊聚类算法具有很好的规模增长性和加速比.  相似文献   

4.
针对模糊C 均值(FCM)聚类算法在图像分割中存在的对初始类中心敏感且迭代过程中计算量大的问题,提出了一种改进的算法。先通过精简数据集,减少算法迭代的时间;再使用样本密度法得到FCM 分割算法的初始聚类中心,以减少算法收敛所需的迭代次数。实验结果表明,改进后的分割算法较好地解决了类中心的初始化问题,提高了算法的收敛速度和运行速度。  相似文献   

5.
针对用模糊C-均值聚类算法选择初始聚类中心敏感及模糊加权指数m对模糊C-均值聚类算法的聚类性能影响较大等问题,利用粒子群优化算法的全局寻优能力强及收敛速度较快的特点,结合模糊C-均值算法提出一种新的模糊聚类算法;采用了一种简单有效的粒子编码方法,将初始聚类中心和模糊加权指数m同时进行粒子群优化搜索,在得到最优适应度的同时,m也收敛到一个稳定的最优解,从而有效地解决了上述问题。算法在人工合成数据集和多个UCI数据集上都取得了较好的效果。  相似文献   

6.
模糊C均值聚类(FCM)和可能性模糊C均值聚类(PFCM)没有考虑样本特征项及每个样本对聚类的贡献程度,存在对噪声较敏感的问题。特征减少的模糊聚类算法FRFCM可剔除数据集中无效特征量,且考虑了剩余特征量的权重,具有更好的聚类性能。对此,在可能性模糊C均值聚类算法(PFCM)的基础上将其与FRFCM算法相结合,提出新的特征逐减的可能性模糊C均值聚类算法(FRPFCM)。该算法解决了PFCM算法参数依赖的问题,且在迭代过程中可自动淘汰无效特征项并更新各特征项对聚类的贡献程度。对人工数据集以及UCI数据集进行测试的结果表明,提出的FRPFCM算法可得到更高的聚类准确率,所需迭代次数更少,算法收敛速度更快。  相似文献   

7.
基于FFCM聚类的城市交通拥堵判别研究*   总被引:2,自引:0,他引:2  
对城市道路交通拥堵状态判别的问题,提出了一种硬C均值(HCM)聚类与模糊C均值(FCM)聚类相结合的快速模糊C均值聚类(FFCM)算法。用硬聚类的结果对模糊聚类初始值的选取进行指导,以加速算法的收敛过程。将该算法用于城市交通流数据的聚类分析结果表明,该算法能够快速而有效地对城市交通流状况进行判别,为动态交通拥堵预警和交通疏导策略的制定提供依据。  相似文献   

8.
针对传统模糊C均值聚类算法和基于K-means++优化聚类中心的模糊C均值算法存在初始聚类中心敏感、聚类速度收敛慢、聚类算法需要人为给定聚类数目等缺陷,受密度峰值聚类算法(Clustering by Fast Search and Find of Density Peaks,CFSFDP)的启发,提出了基于密度峰值算法优化的模糊C均值聚类算法,自适应产生初始聚类中心,确定聚类数目,并优化算法收敛过程。实验结果表明,改进后的算法与传统模糊聚类C均值算法相比能够准确地得到簇的数目,性能有明显的提高,并加快算法的收敛速度,达到相对更好的聚类效果。  相似文献   

9.
本文以灰度值的图像分割为基础,对模糊C均值聚类算法(Fuzzy C-means,FCM)[1]和硬聚类进行了详尽的讨论,在此基础上对两者进行了比较,包括两者的迭代速度比较和两者的分割效果比较,聚类中心的初始化对迭代速度和分割效果的影响,并以此为基础对FCM聚类算法进行了改进。实验表明,改进的FCM聚类算法在迭代速度和分割效果方面都明显优于原始的FCM聚类算法。  相似文献   

10.
针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本点的密度来确定初始聚类中心,避免了初始聚类中心随机选取而产生的聚类结果的不稳定;采用马氏距离计算样本集的相似度,以满足不同度量单位数据的要求。实验结果表明,FCMBMD算法在聚类中心、收敛速度、迭代次数以及准确率等方面具有良好的效果。  相似文献   

11.
针对局部空间信息的模糊C-均值算法(WFLICM)中空间影响因子容易受到噪声影响出现错误标识的问题,提出一种融合局部和非局部空间信息的模糊C-均值聚类图像分割算法(NLWFLICM),在WFLICM算法的模糊影响因子中引入非局部空间信息,根据噪声程度自适应地设置局部和非局部信息权重,并重新标记中心点的模糊影响因子。实验结果表明,NLWFLICM算法具有比WFLICM算法更强的鲁棒性和自适应性,并在一定程度上提高了WFLICM算法对含有大量噪声图像进行分割的鲁棒性,同时保留了图像的纹理。为了提高算法的聚类性能和收敛速度,结合Canopy算法能够快速对数据进行粗聚类的优点,提出基于Canopy聚类与非局部空间信息的FCM图像分割改进算法(Canopy-NLWFLICM),可以在NLWFLICM算法聚类前,对聚类中心进行预处理,从而提高收敛速度和图像分割精度。  相似文献   

12.
一种快速的模糊C均值聚类彩色图像分割方法   总被引:4,自引:0,他引:4       下载免费PDF全文
FCM用于彩色图像分割存在聚类数目需要事先确定、计算速度慢的问题,为此,提出一种快速的模糊C均值聚类方法(FFCM)。首先,对原始彩色图像进行基于梯度图的分水岭变换,从而把原始彩色图像数据分成一些具有色彩一致性的子集;然后,利用这些子集的大小和中心点进行模糊聚类。由于FFCM聚类样本数量显著减小,因此可以大幅提高模糊C均值聚类算法的计算速度,进而可以采用聚类有效性指标确定聚类数目。实验表明,这种方法不需要事先确定聚类数目,在聚类有效性能不变的前提下,可以使模糊聚类的速度得到明显提高,实现了彩色图像的快速分割。  相似文献   

13.
针对模糊C—均值(FCM)聚类算法聚类结果依赖于初始中心的选取,易收敛于局部极值等问题,提出了一种密度峰值聚类(DPC)算法和FCM相结合的混合聚类方法(DPC-FCM),利用密度峰值快速搜索算法可以比较准确地刻画聚类初始中心的特点,改善FCM聚类算法存在的不足,从而实现优化聚类.在UCI数据集和人工模拟数据集上的实验结果显示:融合后的新算法和传统的FCM算法相比有着更高的正确率和更快的收敛速度,证明了新算法的可行性.  相似文献   

14.
基于模糊C均值聚类的医学图像分割研究   总被引:1,自引:0,他引:1  
模糊C均值聚类算法(FCM)在硬C均值聚类的基础上有效地解决了医学图像分割中存在的模糊情况,通过建立表示图像中像素点与聚类中心加权相似度的目标函数,采用迭代优化的方法求解目标函数的极小值来确定最佳聚类。针对FCM算法中存在的对大样本数据分割速度慢、结果易受初始值影响、对噪声敏感、难以适应多种数据分布等缺陷,涌现出了大量的改进算法。对其中的部分改进算法进行综述,主要介绍快速FCM算法、基于初始值选取的FCM算法、基于空间邻域信息的FCM算法以及基于核函数的FCM算法等,并对其优缺点进行概要的总结和介绍。指出该算法进一步的研究方向。  相似文献   

15.
基于快速二维熵的加权模糊C均值聚类图像分割   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种结合快速二维熵和加权模糊C均值聚类的图像分割方法。采用快速二维熵算法对实际图像进行初步分割求得目标和背景的中心,然后采用样本点像素与其邻域灰度像素的差别表征该样本点对分类的影响程度,最后利用加权模糊C均值聚类算法完成图像分割。该方法一方面解决了传统的模糊C均值聚类算法对初始值敏感的问题,另一方面克服了传统的聚类算法对数据集进行等划分的缺陷。实验结果表明,该方法不仅具有良好的收敛性,而且还可以有效地把目标从背景中分割出来,具有重要的实际应用价值。  相似文献   

16.
快速模糊C均值聚类彩色图像分割方法   总被引:33,自引:3,他引:33       下载免费PDF全文
模糊C均值(FCM)聚类用于彩色图像分割具有简单直观、易于实现的特点,但存在聚类性能受中心点初始化影响且计算量大等问题,为此,提出了一种快速模糊聚类方法(FFCM)。这种方法利用分层减法聚类把图像数据分成一定数量的色彩相近的子集,一方面,子集中心用于初始化聚类中心点;另一方面,利用子集中心点和分布密度进行模糊聚类,由于聚类样本数量显著减少以及分层减法聚类计算量小,故可以大幅提高模糊C均值算法的计算速度,进而可以利用聚类有效性分析指标快速确定聚类数目。实验表明,这种方法不需事先确定聚类数目并且在优化聚类性能不变的前提下,可以使模糊聚类的速度得到明显提高,实现彩色图像的快速分割。  相似文献   

17.
针对模糊C-均值聚类对初始值敏感、容易陷入局部最优的缺陷,提出了一种基于萤火虫算法的模糊聚类方法。该方法结合萤火虫算法良好的全局寻优能力和模糊C-均值算法的较强的局部搜索特性,用萤火虫算法优化搜索FCM的聚类中心,利用FCM进行聚类,有效地克服了模糊C-均值聚类的不足,同时增强了萤火虫算法的局部搜索能力。实验结果表明,该算法具有很好的全局寻优能力和较快的收敛速度,能有效地收敛于全局最优解,具有较好的聚类效果。  相似文献   

18.
模糊C-均值聚类算法广泛用于图像分割,但存在聚类性能受类中心初始化影响,且计算量大等问题。为此,提出了一种基于微粒群的模糊C-均值聚类图像分割算法,该方法利用微粒群较强的搜索能力搜索聚类中心。由于搜索聚类中心是按密度进行,计算量小,故可以大幅提高模糊C-均值算法的计算速度。实验表明,这种方法可以使模糊聚类的速度得到明显提高,实现图像的快速分割。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号