首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
In this study, the microstructure, mechanical properties and corrosion behaviors of a Zn–1.6 Mg(wt%) alloy during multipass rotary die equal channel angle pressing(RD-ECAP) processing at 150 °C were systematically investigated. The results indicated that a Zn + Mg_2 Zn_(11) + MgZn_2 ternary eutectic structure was formed in as-cast Zn–Mg alloy. After ECAP, the primary Zn matrix turned to fine dynamic recrystallization(DRX) grains, and the network-shaped eutectic structure was crushed into fine particles and blended with DRX grains. Owing to the refined microstructure, dispersed eutectic structure and dynamically precipitated precipitates, the 8 p-ECAP alloy possessed the optimal mechanical properties with ultimate tensile strength of 474 MPa and elongation of 7%. Moreover, the electrochemical results showed that the ECAP alloys exhibited similar corrosion rates with that of as-cast alloys in simulated body fluid, which suggests that a high-strength Zn–Mg alloy was successfully developed without sacrifice of the corrosion resistance.  相似文献   

2.
The effect of impurity element Fe on corrosion behavior of AZ61 magnesium alloys in various states has been investigated by immersion test and hydrogen evolution measurements in 3.5% sodium chloride solution.The corrosion rate is found to relay on the impurity Fe concentration in the alloys and decreases with decreasing Fe content.When Fe content drops from 150 ppm to 10 ppm,the corresponding corrosion rates under as-cast and solution treatment conditions are reduced from 8.54 mm/a and 8.61 mm/a to 2.54 mm/a and 0.21 mm/a,respectively.The corrosion pattern of the AZ61 alloys is the localized corrosion,and the galvanic couples are formed among the impurity particles,second-phase particles and the matrix.The Fe impurity particles tend to act as main cathodic to form micro-galvanic cell with the α-Mg matrix,which is harmful for corrosion resistance of AZ61 alloy.  相似文献   

3.
The microstructure and anti-corrosion behavior of Mg–Mn alloys by magnesium scrap have been investigated in this study.The results show that the size of the Fe-rich particles in magnesium scrap decreases but the quantity increases with the Mn addition.Although the presence of Mn-containing Fe-rich particles with unique symbiotic structure can eff ectively weaken the micro-galvanic corrosion,the presence of more free Fe(Fe-rich particles) does not necessarily lead to severe corrosion of the alloy.The corrosion susceptibility of Mg–Mn–Fe alloy primarily depends on the solubility of iron in the Mg matrix,while it can be significantly reduced by suitable Mn addition.Besides,the tolerance limit of the Fe impurity can be expressed as Fe_(max) = 0.0083 Mn(relative to the iron solubility).Only when the Fe/Mn ratio is below 0.0083 can the alloy have excellent corrosion resistance,with the corrosion rate changing in the scope of 0.38 ± 0.09 to 0.54 ± 0.15 mg/cm~2 day and i_(corr) from 3 to 9 × 10~(–4) A/cm~2.  相似文献   

4.
Centimeter-sized Mg_(65)Zn_(30)Ca_5 bulk amorphous alloys were fabricated by the spark plasma sintering process from the amorphous powders with a size smaller than 5 l m prepared by ball-milling.The sintered Mg_(65)Zn_(30)Ca_5samples were in an amorphous state when the spark plasma sintering was performed at a temperature of 383 K under a pressure of 600 MPa.The data of polarization curves presented that the sintered Mg_(65)Zn_(30)Ca_5bulk amorphous alloys exhibited higher corrosion resistance than pure Mg and AZ31B alloy owing to high content of Zn and homogeneous structure.A calcium phosphate compound layer was formed on the sintered Mg_(65)Zn_(30)Ca_5bulk amorphous sample after immersion in Hanks’solution,which is effective in improving corrosion resistance and bioactivity.The sintered Mg Zn Ca bulk amorphous alloys with large dimensions broaden the potential application of bulk amorphous alloys in the biomedical fields.  相似文献   

5.
Biodegradable Mg-xB i(x = 3, 6 and 9wt.%) alloys were fabricated by ingot casting, and the change of corrosion behavior of the alloys in the Hank's solution was analyzed with respect to the microstructure using optical micrograph(OM), X-ray diffraction(XRD), scanning electron microscope(SEM) equipped with an energy dispersive X-ray spectrometer(EDS), electrochemical and immersion tests. The results show that the microstructures of the as-cast Mg-Bi alloys mainly consisted of dendritic α-Mg grains and Mg3Bi2 phase in common, with the secondary dendrite arm spacing(SDAS) decreasing significantly from 41.2 μm to 25.4 μm and the fraction of Mg3Bi2 increasing from 3.1% to 10.7%. Furthermore, the corrosion rate increasing from 1.32 mm·a-1 to 8.07 mm·a-1 as the Bi content was increased from 3wt.% to 9wt.%. The reduced corrosion resistance was mainly ascribed to the increasing fraction of the second phase particles, which bring positive effects on the development of pitting.  相似文献   

6.
Microstructures and properties of rapidly solidified Mg-Zn-Ca alloys   总被引:1,自引:0,他引:1  
Ternary alloys based on the Mg-Zn-Ca system were produced by twin-roll rapid solidification.The alloys were characterized by OM,SEM,HRTEM,XRD,EDS and Micro-hardness.The results show that the rapidly solidified flakes are of fine dendritic cell structures with the cell size ranging from 1 to 5μm.The Mg-6Zn-5Ca alloy in RS and annealing(200℃for 1 h) states are mainly composed ofα-Mg,Mg_2Ca,Ca_2Mg_6Zn_3 and a small quantity of Mg_(51)Zn_(20),MgZn_2 and Mg_2Zn_3.Micro-hardness increases with the increment of...  相似文献   

7.
Effects of equal channel angular pressing(ECAP) extrusion on the microstructure, mechanical properties and biodegradability of Mg–2Zn– xGd–0.5Zr( x=0,0.5,1,2 wt%) alloys were studied in this work. Microstructure analysis, tensile test at ambient temperature, immersion test and electrochemical test in Hank's solution were carried out. The results showed that Gd could further enhance the grain refinement during the ECAP extrusion. Both Gd addition and ECAP extrusion could improve the mechanical properties of the alloys, and the extrusion played the dominant role. Minor addition of Gd(0.5–1 wt%) could obviously enhance the corrosion resistance of the alloys. To some extent, ECAP extrusion improved the corrosion resistance of the alloys due to the change of second phases distribution and the refinement of grains. Further increase in extrusion pass was detrimental to the improvement of the corrosion resistance as a result of increment of the grain boundaries.  相似文献   

8.
Microstructural evolution during severe plastic deformation and mixing of Mg_(95.8)Zn_(3.6)Gd_(0.6) and Mg_(97)Cu_1Y_2(at%) alloys upon friction stir welding was studied.A laminated onion-ring structure composed of alternative distribution of layers with significantly refined microstructures from diff erent alloys was formed in the stirred zone.Coarse quasicrystals were broken up and dispersed with most of them being transformed into cubic W-phase particles,and thick 18 R long-period stacking ordered plates were fractured and transformed into fine 14 H-LPSO lamellae in the stirred zone(SZ) experiencing complex material flow under high strain rate.Fine W-phase particles and 14 H-LPSO lamellae formed during dissimilar friction stir welding(FSW) usually have no specific orientation relationship with surrounding Mg matrix.Chemical measurements demonstrated occurrence of interdiff usion between dissimilar layers in the SZ.Phase transformation was observed for some particles of quasicrystals and long-period stacking ordered(LPSO) in regions slightly outside the SZ.An ultimate tensile strength of ~ 415 MPa and an elongation to failure of ~ 27.8%,both exceeding those of base materials,were obtained in the SZ,due to microstructural refinement and formation of a laminated structure.  相似文献   

9.
Possibility of using Mo as an alloying element in Zr-based alloys was attractive in terms of microstructure refinement and mechanical properties strengthening. In this research, Zr–1.0Cr–0.4Fe–xMo(0, 0.2, 0.4, and 0.6) alloys with different Mo contents were prepared by vacuum arcmelting method, the microstructure and the corrosion resistance of these alloys were investigated. Addition of Mo has a refinement effect on the microstructure; with the increase of Mo content, the a-laths in the as-cast samples and the grain size in the annealed samples decrease. Zr–1.0Cr–0.4Fe–xMo alloys have large numbers of fine second-phase particles(SPPs) in the matrix, the area fraction of the SPPs is more than 10 %. With the increase of Mo content, the population density of the SPPs increases significantly, while the average diameter of the SPPs decreases. Mo addition also affects the texture; the intensity of basal pole texture aligning normal direction decreases with the increase of Mo content in the alloys.Compared with Zr-4 and Zr–1Nb, Zr–1.0Cr–0.4Fe–xMo alloys have excellent corrosion resistance in 500 °C/10.3 MPa steam. The corrosion rates of Mo-containing alloys are higher than that of Mo-free alloy, which is mainly attributed to the solute Mo atoms in the Zr matrix.Change of the SPPs features due to the increase of Mo content alleviates the degradation of corrosion resistance in some degree, but it is not the dominant factor.  相似文献   

10.
The as-cast multi-element Mg–4Gd–1Y–1Zn–0.5Ca–1Zr alloy with low rare earth additions was prepared, and the solution treatment was applied at different temperatures. The microstructural evolution of the alloy was characterized by optical microscopy and scanning electron microscopy, and corrosion properties of the alloy in 3.5% NaCl solution were evaluated by immersion and electrochemical tests. The results indicate that the as-cast alloy is composed of the a-Mg matrix,lamellar long-period stacking-ordered(LPSO) structure and eutectic phase. The LPSO structure exists with more volume fraction in the alloy solution-treated at 440 °C, but disappears with the increase in the solution temperature. For all the solution-treated alloys, the precipitated phases are detected. The corrosion rates of the alloys decrease first and then increase slightly with the increase in the solution temperature, and the corrosion resistance of the solution-treated alloys is more than four times as good as that of the as-cast alloy. In addition, the alloy solution-treated at 480 °C for 6 h shows the best corrosion property.  相似文献   

11.
The Mg97Y2Zn1 alloy processed by equal channel angular pressing (ECAP) has been investigated. It was found that the blocks of secondary phase were broken into uniform distributed sections after ECAP. The Mg97Y2Zn1 alloy processed by ECAP obtained ultrafine grains and exhibits excellent mechanical properties. The average grain size of about 330 nm, yield strength (YS) of 400.3 MPa and ultimate tensile strength (UTS) of 450.0 MPa were obtained by two-step ECAP of 4 passes at 623 K and 2 passes at 603 K. The long-period stacking (LPS) structures contribute to the formation of ultrafine grains in ECAP processed Mg97Y2Zn1 alloy. The results demonstrate that ECAP instead of rapid solidified powder metallurgy (RS/PM) can refine grain size and enhance the strength of Mg97Y2Zn1 alloy. It was also found that the elongation of alloy is decreased with increasing pass number. It was found that cracks were preferentially initiated and propagated in the interior of X-phase during the process of ECAP.  相似文献   

12.
Rare earth (RE) elements have large solid solubility in magnesium and are widely used to regulate the microstructure and property of advanced magnesium alloys. However, different kinds of RE elements have different effects on microstructure and property of the alloy. In this study, a Mg-Zn-Y alloy and a Mg-Zn-Gd alloy with alloying elements of the same atomic percentage were designed to clarify the effect of yttrium (Y) and gadolinium (Gd) on the corrosion behavior of as-cast MgZn2Y2.66 and MgZn2Gd2.66 alloys. The results show that the MgZn2Y2.66 alloy is mainly composed of α-Mg phase and long period stacking ordered (LPSO) phase, while MgZn2Gd2.66 alloy is mainly composed of α-Mg phase and (Mg, Gd)3Zn phase (W phase). Generally speaking, the corrosion phenomena of the two alloys in 3.5 wt% NaCl solution are similar. In the early stages of exposure, the alloys underwent uniform corrosion at a relatively low corrosion rate. With prolonged exposure, localized corrosion became dominated and the corrosion rate was greatly increased. However, the corrosion rate of the MgZn2Y2.66 alloy, in terms of the corrosion current density, is about one order of magnitude lower than that of the MgZn2Gd2.66 alloy. The high corrosion resistance of the MgZn2Y2.66 alloy is mainly attributed to the presence of LPSO phase in form of continuous networks and the relatively high corrosion resistance of the corrosion product layer on the alloy.  相似文献   

13.
采用常规凝固技术制备了MgZn6xYx(x=0.7,1.0,1.5,2.0)合金,研究了Y含量对含有二十面体准晶相(I相)MgZn6xYx合金组织和性能的影响。结果表明,MgZn6xYx合金由α-Mg基体和分布在晶界周围的(α-Mg+I相)共晶组织组成。随着Y含量增加,基体晶粒尺寸减小,共晶组织尺寸增大,含量增加,由不连续分布转变为连续分布。在凝固过程中,二十面体准晶相通过共晶转变形成。Mg89.5Zn9.0Y1.5合金的抗拉强度和伸长率达到最大值,分别为179.2MPa和3.5%。MgZn6xYx合金的断口呈现准解理断裂特征。  相似文献   

14.
Mg-Zn-Zr series Mg alloys(ZK) are one of the most important commercial Mg alloys due to their good comprehensive mechanical properties. The phase equilibria of the Mg-Zn-Zr system at 400 ℃ covering the overall composition range were investigated by X-ray diffraction and electron probe microanalyses on thirteen ternary alloys. Three ternary compounds, τ_1, τ_2 and τ_3, were detected to be thermodynamically stable at 400 ℃, and their homogeneity range was determined to be Mg_((7-17))Zn_((80-88))Zr_((4-6)), Mg_((15-22))Zn_((66-65))Zr_((9-16)) and Mg_9 Zn_(68)Zr_(23)(in at.%), respectively. Eight three-phase regions and four two-phase regions were observed. The maximum solubility of Mg in Zn_(22) Zr, Zn_(39) Zr_5 and Zn_3 Zr phases was measured to be 0.52, 0.37 and 0.99 at.%, respectively, while the solubility of Zr in MgZn_2 and Mg_2 Zn_3 phases is negligible. The isothermal section of the Mg-Zn-Zr system at 400 ℃ was then constructed based on the present experimental data.  相似文献   

15.
The influence of long-term solution treatment for various intervals on the microstructure,mechanical properties,and corrosion resistance of the as-cast Mg–5Zn–1.5Y alloy was investigated.Variation of secondary phases was studied during solution treatment through thermal analysis test and thermodynamic calculations.Tensile and hardness tests,as well as polarization and immersion tests,were performed to evaluate the mechanical properties and corrosion behavior of the ascast and heat-treated alloy,respectively.Results show that solution treatment transforms I-phaseinto W-phaseas well as dissolves it into the a-Mg matrix to some extent;therefore,the amount of W-phase increases.Moreover,prolonged solution treatment decreases the volume fraction of the phases.In the first stage of solution treatment for 14 h,the tensile properties significantly increase due to the incomplete phase transformation.Although long-term solution treatment sharply decreases the tensile and hardness properties of the alloy,it improves the corrosion resistance due to the transformation of I-phase into W-phase.In fact,it decreases corrosion potential and simultaneously dissolves intermetallic compounds into the a-Mg matrix,resulting in the reduction in galvanic microcells between the matrix and compounds.It is found that the optimum time for long-term solution treatment is 14 h,which improves both corrosion behavior and mechanical properties.  相似文献   

16.
通过在Mg-10Gd-2Y-0.5Zr合金中添加Zn,采用SEM、XRD及万能拉伸试验机,研究了Zn添加对其铸态组织和力学性能的影响。结果表明,Mg-10Gd-2Y-0.5Zr合金的铸态组织主要由α-Mg、Mg5(Gd,Y)和Mg24(Y,Gd)5相组成,而添加质量分数为0.5%~1.5%的Zn后,合金的铸态组织主要由α-Mg、Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5及Mg12(Gd,Y)Zn相组成。添加0.5%的Zn后,合金的室温力学性能明显提高,当Zn含量高于1.0%后,镁合金的室温力学性能开始逐步降低。当Zn含量为0.5%时,合金具有较佳的综合力学性能,其抗拉强度、屈服强度和伸长率分别为197 MPa、160 MPa和4.37%。Zn对Mg-10Gd-2Y-0.5Zr合金铸态力学性能的影响与其铸态组织中Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5和Mg12(Gd,Y)Zn第二相及其数量有关。  相似文献   

17.
高强镁合金点焊接头性能   总被引:3,自引:2,他引:1       下载免费PDF全文
采用电阻点焊方法对高强镁合金Mg96Zn2Y2进行了焊接.通过扫描电子显微镜对接头微观组织进行了观察,分析了接头的组织,研究了焊接电流对接头熔核直径及抗剪载荷的影响.在此基础上探讨了接头组织对接头性能的影响.结果表明,接头熔核直径与抗剪载荷均随焊接电流的增大而增大,接头最大抗剪强度约为142 MPa;接头熔核区第二相呈细网状分布,其α-Mg晶粒发生了粗化,直径约为30 μm.熔核区这些组织特征被认为是接头弱化的主要原因.  相似文献   

18.
We have recently proposed a new method to design one-dimensional structures of MgH2 in the nano- and micrometer ranges by hydrogen-induced disproportionation of bulk Mg24Y5. The present study confirms the same behavior in hydrogenated Mg5Ga2 and Mg6Pd. Single-crystalline one-dimensional structures and microparticles of MgH2 are formed by hydrogen absorption and subsequent partial disproportionation of Mg5Ga2 and Mg6Pd. The MgH2 whiskers and particles grow with different morphologies for different alloying partners. Growth mechanisms are proposed in relation to the morphology and the chemical surface composition of original compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号