首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.

A method for the radiometric correction of wide field-of-view airborne imagery has been developed that accounts for the angular dependence of the path radiance and atmospheric transmittance functions to remove atmospheric and topographic effects. The first part of processing is the parametric geocoding of the scene to obtain a geocoded, orthorectified image and the view geometry (scan and azimuth angles) for each pixel as described in part 1 of this jointly submitted paper. The second part of the processing performs the combined atmospheric/ topographic correction. It uses a database of look-up tables of the atmospheric correction functions (path radiance, atmospheric transmittance, direct and diffuse solar flux) calculated with a radiative transfer code. Additionally, the terrain shape obtained from a digital elevation model is taken into account. The issues of the database size and accuracy requirements are critically discussed. The method supports all common types of imaging airborne optical instruments: panchromatic, multispectral and hyperspectral, including fore/aft tilt sensors covering the wavelength range 0.35-2.55 w m and 8-14 w m. The processor is designed and optimized for imaging spectrometer data. Examples of processing of hyperspectral imagery in flat and rugged terrain are presented. A comparison of ground reflectance measurements with surface reflectance spectra derived from airborne imagery demonstrates that an accuracy of 1-3% reflectance units can be achieved.  相似文献   

2.
Abstract Environmental analysis, management and modelling require detailed and precise land‐use/land‐cover discrimination as initial conditions of land surface characteristics. With the ultimate goal of accurate land surface classification analysis, we devised a fully image‐based and physically based correction method (the Integrated Radiometric Correction (IRC) method) considering both the atmospheric and the topographic effects simultaneously, using the information deduced from the satellite images and 5 m resolution DEM data. The overall process is carried out in four steps: (i) calculation of the radiance/irradiance relational expression for horizontal surfaces, (ii) devising the radiance/irradiance relational expression for inclined surfaces, (iii) derivation of solar and land geometric parameters from DEM data, as well as the calculation of the topographic correction factor (A‐factor) and the atmospheric transmittance functions, and (iv) retrieval of the corrected surface reflectance and radiance. Using Landsat/ETM+ satellite data, the performance of the formulated IRC method is evaluated visually and statistically. Visual evaluation of radiometrically corrected images shows significant improvements for each band as well as for various bands composites, while the independence between the corrected surface reflectance and radiance, and the topography (incidence angle (i) or solar illumination (cos i)) is shown by very weak correlation coefficients as compared with non‐corrected data.  相似文献   

3.
卫星遥感影像数据的地形影响校正   总被引:6,自引:2,他引:6  
武瑞东 《遥感信息》2005,(4):31-34,i0001
地形影响校正是遥感影像辐射校正的主要内容,是获得地表真实反射率的必不可少的一步。本文提出的方法中,将6S大气校正模型与数字高程模型(DEM)结合起来,计算出水平地面上接收到的直接辐射与漫射辐射,并采用一个简单公式将其转化到地形坡面上,从而实现了对地面的辐射能量校正,同时,6S模型对卫片还进行了大气改正,可输出卫片在大气层底部的辐射亮度与反射率;然后将基于坡面的反射率换算到其在水平面上的对应值,即实现了对反射率的地形影响校正。在我们所实施的“滇金丝猴保护项目”的植被研究中,应用本方法对梅里雪山区域的ETM+影像进行了校正,大大减小了地形对遥感数据的附加影响。  相似文献   

4.
A method is presented for bi‐directional reflectance distribution function (BRDF) parametrization for topographic correction and surface reflectance estimation from Landsat Thematic Mapper (TM) over rugged terrain. Following this reflectance, albedo is calculated accurately. BRDF is parametrized using a land‐cover map and Landsat TM to build a BRDF factor to remove the variation of relative solar incident angle and relative sensor viewing angle per pixel. Based on the BRDF factor and radiative transfer model, solar direct radiance correction, sky diffuse radiance and adjacent terrain reflected radiance correction were introduced into the atmospheric‐topographic correction method. Solar direct radiance, sky diffuse radiance and adjacent terrain reflected radiance, as well as atmospheric transmittance and path radiance, are analysed in detail and calculated per pixel using a look‐up table (LUT) with a digital elevation model (DEM). The method is applied to Landsat TM imagery that covers a rugged area in Jiangxi province, China. Results show that atmospheric and topographic correction based on BRDF gives better surface reflectance compared with sole atmospheric correction and two other useful atmospheric‐topographic correction methods. Finally, surface albedo is calculated based on this topography‐corrected reflectance and shows a reasonable accuracy in albedo estimation.  相似文献   

5.
空间动态可变材质的交互式全局光照明绘制   总被引:1,自引:1,他引:0  
孙鑫  周昆  石教英 《软件学报》2008,19(7):1783-1793
提出了一种空间动态可变材质的交互式全局光照明绘制算法.如果在绘制过程中允许用户对物体的材质作修改,并且对一个物体的不同部分的材质作不同的修改,则称为空间动态可变材质.由于最终出射的辐射亮度和材质呈非线性关系,因此现有许多交互式全局光照明算法不允许用户修改物体的材质.如果一个物体各部分的材质可以不相同,那么材质对最终的出射的辐射亮度的影响更为复杂,目前没有任何交互式全局光照明绘制算法能够在绘制过程中对一个物体不同部分的材质作不同的修改.将一个空间动态可变材质区域划分成许多子区域来近似模拟,每个子区域内部材质处处相同.光在场景传播过程中可能先后被不同的子区域反射,并以此将最终出射的辐射亮度分为许多部分.用一组基材质来线性表示所有的材质,这组基材质被赋予场景中的所有子区域,从而得到不同的基材质的分布.预计算所有这些基材质分布下的各部分最终出射的辐射亮度.绘制时根据各子区域材质在基材质上的系数组合相应的预计算数据,就能交互式绘制全局光照明效果.  相似文献   

6.
机载AISA EagleⅡ传感器为"黑河综合遥感联合试验(HiWATER)"额济纳旗试验区提供航空高光谱影像。介绍了高光谱原始数据的辐射定标、几何校正、大气校正等预处理过程。根据研究区地形差异以及数据使用目的的多样性,几何校正中可选择是否加高精度DEM产品,大气校正的选择策略可分为平坦地形无DEM的大气校正和起伏地形添加DEM大气校正。本试验数据采用加载高精度DEM的几何校正和平坦地形大气校正方法,经过预处理后的高光谱数据产品,其地理坐标与高分辨率的CCD影像对比,地理位置信息较为准确;与实测地物光谱对比,影像光谱能较好地体现地物光谱的特性,数据可用作定量遥感进一步的研究。  相似文献   

7.
A method for the detection and correction of water pixels affected by adjacency effects is presented. The approach is based on the comparison of spectra with the near infrared (NIR) similarity spectrum. Pixels affected by adjacency effects have a water-leaving reflectance spectrum with a different shape to the reference spectrum. This deviation from the similarity spectrum is used as a measure for the adjacency effect. Secondly, the correspondence with the NIR similarity spectrum is used to quantify and to correct for the contribution of the background radiance during atmospheric correction. The advantage of the approach is that it requires no a priori assumptions on the sediment load or related reflectance values in the NIR and can therefore be applied to turbid waters. The approach is tested on hyperspectral airborne data (Compact Airborne Spectrographic Imager (CASI), Airborne Hyperspectral Scanner (AHS)) acquired above coastal and inland waters at different flight altitudes and under varying atmospheric conditions. As the NIR similarity spectrum forms the basis of the approach, the method will fail for water bodies for which this similarity spectrum is no longer valid.  相似文献   

8.
孙鑫  周昆  石教英 《软件学报》2008,19(4):1004-1015
现有的基于预计算的全局光照明绘制算法都假设场景中物体的材质固定不变,这样,从入射光照到出射的辐射亮度之间的传输变换就是线性变换.通过对这种线性变换的预计算,可以在动态光源下实现全局光照明的实时绘制.但是,当材质可以改变时,这种线性变换不再成立,因此,现有算法无法直接用于动态材质的场景.提出了一种方法:在修改场景中的物体材质时,可以实时得到场景在直接光照和间接光照下的绘制效果.将最终到达视点的辐射亮度根据其之前经过的反射次数及相应的反射材质分为多个部分,每个部分和先后反射的材质的乘积成正比,从而把该非线性问题转化为线性问题.又将所有可选的材质都表示为一组基的线性组合.将这组基作为材质赋予场景中的物体,就有各种不同的组合方式,预计算每种组合下所有部分的出射辐射亮度.在绘制时,根据各物体材质投影到基上的系数线性组合预计算的数据就能实时得到最终的全局光照明的绘制结果.该方法适用于几何场景、光照和视点都不发生变化的场景.使用双向反射分布函数来表示物体的材质,不考虑折射或者半透明的情况.该实现最多包含两次反射,并可以实时绘制得到一些很有趣的全局光照明效果,比如渗色、焦散等等.  相似文献   

9.
We address the problem of estimating the three-dimensional shape and complex appearance of a scene from a calibrated set of views under fixed illumination. Our approach relies on a rank condition that must be satisfied when the scene exhibits specular + diffuse reflectance characteristics. This constraint is used to define a cost functional for the discrepancy between the measured images and those generated by the estimate of the scene, rather than attempting to match image-to-image directly. Minimizing such a functional yields the optimal estimate of the shape of the scene, represented by a dense surface, as well as its radiance, represented by four functions defined on such a surface. These can be used to generate novel views that capture the non-Lambertian appearance of the scene.This research was performed while Hailin Jin was with Computer Science Department, University of California at Los Angeles.  相似文献   

10.
高光谱遥感的地面场景是高光谱遥感系统中影响因素最复杂多变的部分。首先基于星载高光谱遥感成像的辐射传输过程,对非均匀的朗伯表面的入瞳处大气辐亮度传输模型进行了研究,得到只需要考虑目标与邻近像元反射率,大气传输因子的辐亮度简化模型。之后介绍了大气中光子扩散原理,并采用蒙特卡洛方法对大气点扩散函数进行仿真;联合地表目标像元反射率数据计算得到基于非均匀朗伯面地表的邻近像元反射率;然后总结了大气传输模型软件MODTRAN计算入瞳处辐亮度数据的原理步骤,并利用其反演了朗伯表面的相关大气传输参数。最终利用基于传感器入瞳处的辐亮度数据表征了高光谱地面场景。  相似文献   

11.
We analyzed hyperspectral airborne imagery (CASI 2 with 46 contiguous VIS/NIR bands) that was acquired over a Lake Huron coastal wetland. To support detailed Great Lakes coastal wetland mapping, the optimal spatial resolution of imagery was determined to be less than 2 m. There was a 23% change in classification resiliency using the SAM classifier upon resampling the original 1-meter, 18-band imagery to 2-meter pixels, and further classifications with larger pixels (4 and 8 m) increased overall classification change to 35% and 50%, respectively.We performed a series of image classification experiments incorporating three independent band selection methodologies (derivative magnitude, fixed interval and derivative histogram), in order to explore the effects of spectral resampling on classification resiliency. This research verified that a minimum of seven, strategically located bands in the VIS-NIR wavelength region (425.4 nm, 514.9 nm, 560.1 nm, 685.5 nm, 731.5 nm, 812.3 nm and 916.7 nm) are necessary to maintain a classification resiliency above the 85% threshold. Significantly, these seven bands produced the highest classification resiliency using the fewest number of bands of any of the 63 band-reduction strategies that were tested.Analyzing only derivative magnitudes proved to be an unreliable tool to identify optimal bands. The fixed interval method was adversely influenced by the starting band location, making its implementation problematic. The combined use of derivative magnitude and frequency of occurrence appears to be the best method to determine the “optimal” bands for a wetland mapping hyperspectral application.  相似文献   

12.
This study focuses on mapping surface minerals using a new hyperspectral thermal infrared (TIR) sensor: the spatially enhanced broadband array spectrograph system (SEBASS). SEBASS measures radiance in 128 contiguous spectral channels in the 7.5- to 13.5-μm region with a ground spatial resolution of 2 m. In September 1999, three SEBASS flight lines were acquired over Virginia City and Steamboat Springs, Nevada. At-sensor data were corrected for atmospheric effects using an empirical method that derives the atmospheric characteristics from the scene itself, rather than relying on a predicted model. The apparent surface radiance data were reduced to surface emissivity using an emissivity normalization technique to remove the effects of temperature. Mineral maps were created with a pixel classification routine based on matching instrument- and laboratory-measured emissivity spectra, similar to methods used for other hyperspectral data sets (e.g. AVIRIS). Linear mixtures of library spectra match SEBASS spectra reasonably well, and silicate and sulfate minerals mapped remotely, agree with the dominant minerals identified with laboratory X-ray powder diffraction and spectroscopic analyses of field samples. Though improvements in instrument calibration, atmospheric correction, and information extraction would improve the ability to map more pixels, these hyperspectral TIR data nevertheless show significant advancement over multispectral thermal imaging by mapping surface materials and lithologic units with subtle spectral differences in mineralogy.  相似文献   

13.
14.
A simple topographic correction approach, the Variable Empirical Coefficient Algorithm (VECA), was developed using theoretical and statistic analyses of the radiance values of remotely sensed data acquired for rugged terrain and the cosine of the solar illumination angle (cos i). Visual comparison and statistical analysis were used for evaluation of the proposed algorithm and the performance of the VECA approach was compared with 10 commonly used methods. The test site selected for this study is located on the south hill of the Qinling Mountain in Shanxi province, China, and the remotely sensed data used were from Landsat‐7 Enhanced Thematic Mapper Plus (ETM+) images. The results indicate that the Cosine‐T, Cosine‐C, sun–canopy–senor (SCS) and Cosine‐b correction have the problem of overcorrection, and the other corrections can be classed into three ranks: the VECA, b correction and C models performed the best, followed by the Teillet‐regression correction model, and the SCS+C, Minnaert and Minnaert‐SCS corrections performed the worst. The proposed VECA correction and the b correction are the most capable of removing the topographic effects of the ETM+ image. The VECA is not only simple in theory but also easy to operate, indicating that the VECA is an effective topographic correction tool in remote sensing techniques.  相似文献   

15.
Radiance caching methods have proven to be efficient for global illumination. Their goal is to compute precisely illumination values (incident radiance or irradiance) at a reasonable number of points lying on the scene surfaces. These points, called records, are stored in a cache used for estimating illumination at other points in the scene. Unfortunately, with records lying on glossy surfaces, the irradiance value alone is not sufficient to evaluate the reflected radiance; each record should also store the incident radiance for all incident directions. Memory storage can be reduced with projection techniques using spherical harmonics or other basis functions. These techniques provide good results for low shininess BRDFs. However, they get impractical for shininess of even moderate value, since the number of projection coefficients increases drastically. In this paper, we propose a new radiance caching method that handles highly glossy surfaces while requiring a low memory storage. Each cache record stores a coarse representation of the incident illumination thanks to a new data structure, called Equivalent Area light Sources, capable of handling fuzzy mirror surfaces. In addition, our method proposes a new simplification of the interpolation process, since it avoids the need for expressing and evaluating complex gradients.  相似文献   

16.
The remote sensing of turbid waters (Case II) using the Medium Resolution Imaging Spectrometer (MERIS) requires new approaches for atmospheric correction of the data. Unlike the open ocean (Case I waters) there are no wavelengths where the water-leaving radiance is zero. A coupled hydrological atmospheric model is described here. The model solves the water-leaving radiance and atmospheric path radiance in the near-infrared (NIR) over Case II turbid waters. The theoretical basis of this model is described, together with its place in the proposed MERIS processing architecture. Flagging procedures are presented that allow seamless correction of both Case I waters, using conventional models, and Case II waters using the proposed model. Preliminary validation of the model over turbid waters in the Humber estuary, UK is presented using Compact Airborne Spectrographic Imager (CASI) imagery to simulate the MERIS satellite sensor. The results presented show that the atmospheric correction scheme has superior performance over the standard single scattering approach, which assumes that water-leaving radiance in the NIR is zero. Despite problems of validating data in such highly dynamic tidal waters, the results show that retrievals of sediments within 50% are possible from algorithms derived from the theoretical models.  相似文献   

17.
Relighting algorithms make it possible to take a model of a real-world scene and virtually modify its lighting. Unlike other methods that require controlled conditions, we introduce a new radiance capture method that allows the user to capture parts of the scene under different lighting conditions. A novel calibration method is presented that finds the positions of reflective spheres and their mathematically accurate projection onto the scene geometry. The resulting radiance distribution is used to estimate a diffuse reflectance for each object, computed coherently using the appropriate light probe image. Finally, the scene is relit using a novel illumination pattern.  相似文献   

18.
A full-chain process approach to extracting reflectance information from hyperspectral (HRS) data which is valid for all sensor qualities is proposed. This method is based on a mission-by-mission approach, followed by a unique vicarious calibration stage. As the HRS sensor's performance may vary in time and space, a vicarious calibration method to retrieve accurate at-sensor radiance values is necessary. In fact, vicarious calibration solutions usually rely on natural, well-known, bright and dark targets that are large in size and radiometrically homogeneous. Since such targets are not commonly found in the field for every mission and their spectral features can sometimes resemble artifacts in the corrected radiance, a new vicarious calibration approach is needed. This paper describes a new method that uses artificial agricultural black polyethylene nets of various densities as vicarious calibration targets that are set up along the airplane's trajectory (preferably near the airfield). The different densities of the nets combined with any bright background afford full coverage of the sensor's dynamic range. We show that these artificial targets can be used to assess data quality and correct at-sensor radiance within a short time. Several case studies are presented using Aisa-DUAL sensor data taken at different times from different locations. We found that even “lost data” (in terms of radiance drift) could be recovered by the suggested method. We term the suggested vicarious calibration approach supervised vicarious calibration (SVC) and demonstrate its performance in terms of spectral accuracy. The limitations of the method are also discussed but the overall conclusion is that the suggested procedure is functional, valuable and practical for sensors with questionable or uncertain laboratory-determined radiometric parameters.  相似文献   

19.
Ordination and cluster analysis are two common methods used by plant ecologists to organize species abundance data into discrete “associations”. When applied together, they offer useful information about the relationships among species and the ecological processes occurring within a community. Remote sensing provides surrogate data for characterizing the spatial distribution of ecological classes based on the assumption of characteristic reflectance of species and species associations. Currently, there exists a need to establish and clarify the link between theories and practices of classification by ecologists and remote sensing scientists. In this study, high spatial resolution Compact Airborne Spectrographic Imager (CASI) reflectance data were examined and compared to plant community data for a peatland complex in northern Manitoba, Canada. The goal of this research was to explore the relationship between classification of species cover and community data and reflectance values. Ordination and cluster analysis techniques were used in conjunction with spectral separability measures to organize clusters of community-based data that were suitable for classification of CASI reflectance data, while still maintaining their ecological significance. Results demonstrated that two-way indicator species analysis (TWINSPAN) clusters did not correspond well to spectral reflectance and gave the lowest classification results of the methods investigated. The highest classification accuracies were achieved with ecological classes defined by combining the information obtained from a suite of analysis techniques (i.e., TWINSPAN, correspondence analysis (CA), and signature separability analysis), albeit not statistically superior to the classification obtained from the signature separability analysis alone.  相似文献   

20.
Progressive light transport simulations aspire a physically‐based, consistent rendering to obtain visually appealing illumination effects, depth and realism. Thereby, the handling of large scenes is a difficult problem, as in typical scene subdivision approaches the parallel processing requires frequent synchronization due to the bouncing of light throughout the scene. In practice, however, only few object parts noticeably contribute to the radiance observable in the image, whereas large areas play only a minor role. In fact, a mesh simplification of the latter can go unnoticed by the human eye. This particular importance to the visible radiance in the image calls for an output‐sensitive mesh reduction that allows to render originally out‐of‐core scenes on a single machine without swapping of memory. Thus, in this paper, we present a preprocessing step that reduces the scene size under the constraint of radiance preservation with focus on high‐frequency effects such as caustics. For this, we perform a small number of preliminary light transport simulation iterations. Thereby, we identify mesh parts that contribute significantly to the visible radiance in the scene, and which we thus preserve during mesh reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号