首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 546 毫秒
1.
新型细晶强化中厚板Q460的控轧控冷工艺研究   总被引:2,自引:0,他引:2  
通过热轧试验,对比研究了终轧温度及轧后冷却速度对综合力学性能的影响,研究发现:降低终轧温度可以提高钢的屈服强度和抗拉强度,对韧性的影响不大,其强度的提高主要以沉淀强化为主;冷却速度越快,铁素体晶粒越细,钢的强度和韧性越高。但冷速超过15℃/s时会发生贝氏体相变,考虑到钢的综合性能,湘钢Q460热轧时应将终轧温度控制在840℃-860℃之间,冷却速度控制在10~15℃/s为最佳。  相似文献   

2.
采用硫印、热酸侵蚀、原位分析和SEM扫描电镜及能谱分析等方法,分析J55钢级石油套管铸坯中心元素的偏析,研究加热温度、终轧温度、未再结晶区变形率、终轧后冷速及卷取温度等因素对消除或者减轻带钢中带状组织影响规律。结果表明:Mn元素偏析是引起热轧带钢带状组织的直接原因,采取提高加热温度、终轧温度、未再结晶区大变形率、终轧后冷速及降低卷取温度等措施,可以减轻或者消除由于铸坯中心偏析引起的带状组织。  相似文献   

3.
通过模拟实验研究了钛微合金化热轧双相钢的连续冷却转变曲线及终轧温度对组织的影响规律,获得了可行的工艺窗口,并进行了验证性热轧实验.在冷却速率小于5℃·s-1及温度在625~725℃时,实验钢可以形成先共析铁素体.随着终轧温度升高,组织中铁素体及马氏体含量先升高后降低,但幅度不大.同时,当终轧温度较高时,铁素体显微硬度增加,析出强化作用增加.当终轧温度及缓冷温度分别为840℃及700℃时,获得了抗拉强度为672 MPa及屈强比为0.61的性能良好的热轧双相钢.经计算,铁素体组织中析出强化量为78.5 MPa.   相似文献   

4.
应用Gleeble-3500热/力模拟试验机研究了轧后冷速(20—0.5℃/s)、卷取温度(630—500℃)、精轧初始温度(1000—900℃)、末道次精轧温度(860~750℃)对X65管线钢(0.08%C、1.38%Mn、0.032%Nb、0.041%V、50×10^-6N)显微组织的影响。结果表明,增加轧后冷却速度、减小950℃左右的压下量,降低终轧和卷取温度可细化板材组织。提出150mm×1700mm板坯轧成7.1mm成品板的轧制温度为:1150—1200℃加热,≤1130℃粗轧至35mm,950—1020℃精轧,≤830℃终轧,≤580℃卷取,其产品力学性能满足标准要求。  相似文献   

5.
本文为获得具有良好综合性能的U74钢轨,探讨了生产超细珠光体组织重轨的优化热轧及轧后冷却工艺制度,研究了热轧及轧后冷却工艺参数对奥氏体及珠光体组织的影响规律,其结果为:变形温度控制在850~900℃,变形程度控制在50%珠光体片层间距最小,随冷却速度增加而减小;变形温度在850~900℃球团最小并随变形程度,冷却速度增大而减小,通过多道次热轧变形工艺模拟试验测定获得超细珠光体组织的最佳变形工艺为850℃终轧,5~10℃/s冷却工艺。按优化热轧工艺轧制试样的性能达到:σb=1100~1150MPa,σs=750MPa,σs=12—15%,Ψ=37~42%,珠光体片层S为900(?),σ_bσ_s分别比现场轧态轨高150~200MPa,σ_5高3~5%,片层S要小1~1.5倍,并接近热处理钢轨的性能。  相似文献   

6.
通过改变终轧温度及轧后冷却速度,研究了终轧温度及轧后冷却速度对力学性能的影响。研究结果表明:采用轧后加速冷却的方法,可以显著细化Q460的铁素体晶粒,从而提高其强韧性能。当冷速从2℃/s提高到3.86℃/s时,铁素体晶粒直径从11.5μm细化到8.33μm。当冷速达到2.96℃/s以上时,Rel≥475MPa,Rm≥600MPa,屈强比为70%-80%。  相似文献   

7.
通过合理的组织、成分设计,对高强度管线钢控轧控冷工艺参数中加热温度、终轧温度、卷取温度、冷却速度进行控制,得到最佳工艺参数;利用金相显微镜对轧制试样进行金相组织分析,并进行力学性能检测。结果表明,当加热温度为(1 200±20)℃、终轧温度为(850±10)℃、卷取温度为[520(目标值)±14]℃、冷却速度为35℃/s时,钢板可获得铁素体+珠光体、F/P的最佳组织构成与最优的综合力学性能。  相似文献   

8.
通过动态CCT曲线测试和实验室控轧控冷试验,分析了900 MPa级热轧带钢连续冷却过程中的相变过程以及不同卷取温度下显微组织、析出相和力学性能的关系。试验结果表明:随着冷却速度提高,显微组织中多边形铁素体比例下降,贝氏体组织比例升高,冷速大于15℃/s时,显微组织全部为贝氏体;随着卷取温度升高,显微组织中针状铁素体比例下降,多边形铁素体比例升高;当卷取温度为600℃时,组织为铁素体+少量珠光体,此时析出相细小弥散,可获得抗拉强度达到1 000 MPa,延伸率17%的热轧产品。  相似文献   

9.
利用ThermecMastor-Z型热模拟试验机模拟CSP工艺条件,辅以金相显微镜(OM)、扫描电镜(SEM)和维氏硬度计等,研究65Mn钢的连续冷却转变规律及变形温度对其等温相变的影响。绘制了65Mn钢的动态CCT曲线。结果表明,当轧后冷速小于2℃/s时,试验钢可获得铁素体和珠光体组织。随着冷速的增大,试验钢中将出现贝氏体和马氏体组织,硬度增大。当冷速大于40℃/s时,试验钢中的组织全为马氏体,硬度达到678.05HV。此外,在研究不同变形温度对65Mn钢等温相变的影响时发现,第2道次变形温度为920℃时,珠光体组织多呈片层状,硬度为271.86HV;随着变形温度的降低,试验钢中铁素体含量增加,珠光体球化趋势明显,粒状珠光体含量增多。当变形温度下降至860℃时,试验钢的硬度降低至252.21HV,有利于其后续深加工。  相似文献   

10.
利用ThermecMastor-Z型热模拟试验机模拟CSP工艺条件,辅以金相显微镜(OM)、扫描电镜(SEM)和维氏硬度计等,研究65Mn钢的连续冷却转变规律及变形温度对其等温相变的影响。绘制了65Mn钢的动态CCT曲线。结果表明,当轧后冷速小于2℃/s时,试验钢可获得铁素体和珠光体组织。随着冷速的增大,试验钢中将出现贝氏体和马氏体组织,硬度增大。当冷速大于40℃/s时,试验钢中的组织全为马氏体,硬度达到678.05HV。此外,在研究不同变形温度对65Mn钢等温相变的影响时发现,第2道次变形温度为920℃时,珠光体组织多呈片层状,硬度为271.86HV;随着变形温度的降低,试验钢中铁素体含量增加,珠光体球化趋势明显,粒状珠光体含量增多。当变形温度下降至860℃时,试验钢的硬度降低至252.21HV,有利于其后续深加工。  相似文献   

11.
The continuous cooling transformation behavior, the effect of coiling temperature on microstructure and mechanical properties, and strengthening mechanisms of Ti microalloyed high strength hot strip steel were systematically investigated by thermal simulation testing machine, laboratory rolling mill, SEM and HR-TEM. The dynamic CCT curve was established. The results show that the austenite to ferrite and pearlite transformation takes place when the cooling rate is less than 1??/s. The austenite to bainite transformation accompanied with austenite to ferrite and pearlite transformation takes place when the cooling rate is in the range of 5 ??/s to 10 ??/s. The bainitic transformation temperature is about 600??. The amount of granular bainite decreases, while the amount of lath bainite increases with the increase of cooling rate in the range of 20??/s to 50??/s. Furthermore, the study on the effect of coiling temperature on the microstructure and mechanical properties of experimental steel has shown that the strength and plasticity of tested steel are improved with decreasing the coiling temperature. When the coiling temperature is 550?棬the experimental steel possesses optimal mechanical properties owing to the grain refinement and precipitation of nano-scale TiC particles. And the tensile strength, yield strength and elongation of tested steel were 742MPa, 683MPa and 22??5%, respectively.  相似文献   

12.
屈强比偏高是CSP低碳产品的共性问题。为降低CSP低碳酸洗钢SAPH370的屈强比,采取了不同轧制工艺(终轧温度FT7、卷取温度CT和冷却方式)进行试验,对不同工艺下的低碳酸洗钢的力学性能、晶粒尺寸和相组成进行了对比分析。结果表明:SAPH370钢采用终轧温度(FT7)为860℃、卷取温度(CT)600℃、后段快速冷却的工艺,在满足强度要求的前提下,屈强比可降低到0.8以下。观察到铁素体晶粒粗化、珠光体弥散分布。分析表明:CSP采用后段快冷工艺与传统热连轧的两段冷却工艺相当,有利于获得合适的铁素体晶粒度和弥散分布的珠光体。  相似文献   

13.
试验钢SCM435(/%:0.33~0.38C,0.15~0.35Si,0.60~0.85Mn,≤0.025P,≤0.025S,0.90~1.20Cr,0.15~0.30Mo)盘条的生产流程为80t BOF-LF-280 mm×325 mm铸坯-160 mm×160 mm热轧坯-热连轧成Φ16 mm盘条。试验研究了160 mm×160 mm热轧坯由常规轧制工艺(开轧1060℃,精轧930~950℃,吐丝860~900℃,冷却速度0.5~0.6℃/s)和控轧控冷工艺(开轧1060℃,精轧820~850℃,吐丝780~820℃,冷却速度0.4~0.5℃/s)对SCM435钢热轧盘条组织和力学性能的影响。结果表明,随着精轧温度的降低和冷却速度的减小,钢热轧盘条的组织得到改善,抗拉强度明显降低;常规工艺轧制SCM435钢热轧盘条的抗拉强度平均952 MPa,组织为铁素体+珠光体+贝氏体+马氏体,控轧控冷工艺轧制的SCM435钢热轧盘条的抗拉强度平均817 MPa,组织为均匀的铁素体+珠光体。结合控轧控冷工艺原理对钢的组织和性能变化进行了分析。  相似文献   

14.
控轧控冷工艺对汽车大梁板组织及冷弯性能的影响   总被引:1,自引:0,他引:1  
在攀钢热轧板厂对汽车大梁板进行了控轧控冷试验,分析了终轧温度、轧后冷却方式以及卷取温度对汽车大梁板显微组织及冷弯性能的影响。结果表明:采用较低的终轧温度830 ℃、卷取温度600 ℃以及前段冷却的轧后冷却方式,汽车大梁板的铁素体晶粒细小均匀,珠光体分布弥散,并获得了良好的冷弯性能。  相似文献   

15.
随着矿井深度的增加,对锚杆支护强韧性的要求越来越高,为了应对这一情况,需要研发出更高强度的锚杆钢。利用锚杆钢研究了轧制工艺、冷却工艺与珠光体、铁素体相比例,析出相析出行为及力学性能的关系。研究结果表明,在中轧后、精轧前采用适当水冷+回复段处理的复合工艺可使晶粒更细小、组织更均匀。对超高强度锚杆钢进行热压缩变形试验,由热模拟试验结果确定相转变温度为Ac1=737 ℃、Ac3=886 ℃。最终筛选出入精轧温度为810 ℃、回复段温度为800 ℃时,可获得的晶粒尺寸达4 μm,珠光体体积分数为66.8%,铁素体体积分数为33.2%,珠光体片层间距达200 nm;另外调整V、Cr、N等析出以提高锚杆钢的强韧性,较低的回复温度有利于细小、弥散、V(C/N)析出相的析出,V(C/N)的析出可进一步改善锚杆钢的力学性能。由该控轧控冷工艺轧制的锚杆钢屈服强度为780 MPa、抗拉强度为930 MPa、硬度为291HV、伸长率为20%。  相似文献   

16.
通过Gleeble-3800热模拟试验机对AG650LW钢进行动态CCT曲线测定和轧制工艺模拟试验,得出满足650 MPa轮辋钢性能要求的组织为由铁素体+贝氏体+少量的珠光体,其终轧温度840~880℃,卷取温度480℃,轧后层流冷却速率≥10℃/s,硬度≥220HV。试验钢卷的综合开裂率4.3‰,满足了用户的加工期望要求。  相似文献   

17.
 利用Gleeble 1500热应力 应变模拟机研究了铌含量、热变形参数(终轧温度和卷取温度)对相变诱发塑性(TRIP)钢组织和性能的影响。实验结果表明:不含铌实验钢的残余奥氏体量、残余奥氏体相中的碳含量、宏观维氏硬度和抗拉强度与常规低碳硅锰系TRIP钢的水平相当;增加铌含量,残余奥氏体量和残余奥氏体相中的碳含量有所下降,而宏观维氏硬度和抗拉强度提高;铌含量为0014%、终轧温度为780 ℃、卷取温度为400 ℃时,残余奥氏体量、残余奥氏体相中的碳含量与宏观维氏硬度和抗拉强度具有最佳组合。  相似文献   

18.
随着矿井深度的增加,对锚杆支护强韧性的要求越来越高,为了应对这一情况,需要研发出更高强度的锚杆钢。利用锚杆钢研究了轧制工艺、冷却工艺与珠光体、铁素体相比例,析出相析出行为及力学性能的关系。研究结果表明,在中轧后、精轧前采用适当水冷+回复段处理的复合工艺可使晶粒更细小、组织更均匀。对超高强度锚杆钢进行热压缩变形试验,由热模拟试验结果确定相转变温度为Ac1=737 ℃、Ac3=886 ℃。最终筛选出入精轧温度为810 ℃、回复段温度为800 ℃时,可获得的晶粒尺寸达4 μm,珠光体体积分数为66.8%,铁素体体积分数为33.2%,珠光体片层间距达200 nm;另外调整V、Cr、N等析出以提高锚杆钢的强韧性,较低的回复温度有利于细小、弥散、V(C/N)析出相的析出,V(C/N)的析出可进一步改善锚杆钢的力学性能。由该控轧控冷工艺轧制的锚杆钢屈服强度为780 MPa、抗拉强度为930 MPa、硬度为291HV、伸长率为20%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号