首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《能源学会志》2014,87(2):81-88
In this paper, a gas turbine cycle is modeled to investigate the effects of important operating parameters like compressor inlet temperature (CIT), turbine inlet temperature (TIT) and pressure ratio (PR) on the overall cycle performance and CO2 emissions. Such effects are also investigated on the exergy destruction and exergy efficiency of the cycle components. Furthermore, multiple polynomial regression models are developed to correlate the response variables (performance characteristics) and predictor variables (operating parameters). The operating parameters are then optimized. According to the results, operating parameters have a significant effect on the cycle performance and CO2 emissions. The largest exergy destruction is found in the combustion chamber with lowest exergy efficiency. The regression models have appeared to be a good estimator of the response variables. The optimal operating parameters for maximum performance have been determined as 288 K for CIT, 1600 K for TIT and 23.2 for PR.  相似文献   

2.
The principle of optimally tuning the air flow rate and subsequent distribution of pressure drops is applied to optimize the performance of a thermodynamic model for an open regenerative cycle of an externally fired micro gas turbine power plant with pressure drop irreversibilities by using finite-time thermodynamics and considering the size constraints of the real plant. There are eight flow resistances encountered by the working fluid stream for the cycle model. Two of these, the friction through the blades and vanes of the compressor and the turbine, are related to the isentropic efficiencies. The remaining flow resistances are always present because of the changes in flow cross-section at the compressor inlet and outlet, the turbine inlet and outlet and the regenerator hot/cold-side inlet and outlet. These resistances associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop, and control the air flow rate and the net power output and thermal efficiency. The analytical formulae for the power output, efficiency and other coefficients are derived, which indicate that the thermodynamic performance for an open regenerative cycle of an externally fired micro gas turbine power plant can be optimized by adjusting the mass flow rate (or the distribution of pressure losses along the flow path). It is shown that there are optimal air mass flow rates (or the distribution of pressure losses along the flow path) which maximize the net power output.  相似文献   

3.
This paper focuses on novel integration of high temperature solid oxide fuel cell coupled with recuperative gas turbine (with air-film cooling of blades) based hybrid power plant (SOFC-blade cooled GT). For realistic analysis of gas turbine cycle air-film blade cooling technique has been adopted. First law thermodynamic analysis investigating the combine effect of film cooling of blades, SOFC, applied to a recuperated gas turbine cycle has been reported. Thermodynamic modeling for the proposed cycle has been presented. Results highlight the influence of film cooling of blades and operating parameters of SOFC on various performance of SOFC-blade cooled GT based hybrid power plant. Moreover, parametric investigation has also been done to examine the effect of compressor pressure ratio, turbine inlet temperature, on hybrid plant efficiency and plant specific work. It has been found that on increasing turbine inlet temperature (TIT) beyond a certain limit, the efficiency of gas turbine starts declining after reaching an optimum value which is compensated by continuous increase in SOFC efficiency with increase in operating temperature. The net result is higher performance of hybrid cycle with increase in maximum cycle temperature. Furthermore, it has been observed that at TIT 1600 K and compression ratio 20, maximum efficiency of 73.46% can been achieved.  相似文献   

4.
Inlet air cooling and cooling of the compressor discharge using water injection boost both efficiency and power of gas turbine cycles. Four different layouts of the recuperated gas turbine cycle are presented. Those layouts include the effect of evaporative inlet and aftercooling (evaporative cooling of the compressor discharge). A parametric study of the effect of turbine inlet temperature (TIT), ambient temperature, and relative humidity on the performance of all four layouts is investigated. The results indicate that as TIT increases the optimum pressure ratio increases by 0.45 per 100 K for the regular recuperated cycle and by 1.4 per 100 K for the recuperated cycle with evaporative aftercooling. The cycles with evaporative aftercooling have distinctive pattern of performance curves and higher values of optimum pressure ratios. The results also showed that evaporative cooling of the inlet air could boost the efficiency by up to 3.2% and that evaporative aftercooling could increase the power by up to about 110% and cycle efficiency by up to 16%.  相似文献   

5.
Pouria Ahmadi  Ibrahim Dincer   《Energy》2010,35(12):5161-5172
In the present work, a combined heat and power plant for cogeneration purposes that produces 50 MW of electricity and 33.3 kg/s of saturated steam at 13 bar is optimized using genetic algorithm. The design parameters of the plant considered are compressor pressure ratio (rAC), compressor isentropic efficiency (ηcomp), gas turbine isentropic efficiency (ηGT), combustion chamber inlet temperature (T3), and turbine inlet temperature (TIT). In addition, to optimally find the optimum design parameters, an exergoeconomic approach is employed. A new objective function, representing total cost rate of the system product including cost rate of each equipment (sum of the operating cost, related to the fuel consumption) and cost rate of environmental impact (NOx and CO) is considered. Finally, the optimal values of decision variables are obtained by minimizing the objective function using evolutionary genetic algorithm. Moreover, the influence of changes in the demanded power on various design parameters are parametrically studied for 50, 60, 70 MW of net power output. The results show that for a specific unit cost of fuel, the values of design parameters increase, as the required, with net power output increases. Also, the variations of the optimal decision variables versus unit cost of fuel reveal that by increasing the fuel cost, the pressure ratio, rAC, compressor isentropic efficiency, ηAC, turbine isentropic efficiency, ηGT, and turbine inlet temperature (TIT) increase.  相似文献   

6.
Inlet fogging has been widely noticed in recent years as a method of gas turbine air inlet cooling for increasing the power output in gas turbines and combined cycle power plants. The effects of evaporative cooling on gas turbine performance were studied in this paper. Evaporative cooling process occurs in both compressor inlet duct (inlet fogging) and inside the compressor (wet compression). By predicting the reduction in compressor discharge air temperature, the modeling results were compared with the corresponding results reported in literature and an acceptable difference percent point was found in this comparison. Then, the effects of both evaporative cooling in inlet duct, and wet compression in compressor, on the power output, turbine exhaust temperature, and cycle efficiency of 16 models of gas turbines categorized in four A–D classes of power output, were investigated. The results of this analysis for saturated inlet fogging as well as 1% and 2% overspray are reported and the prediction equations for the amount of actual increased net power output of various gas turbine nominal power output are proposed. Furthermore the change in values of physical parameters and moving the compressor operating point towards the surge line in compressor map was investigated in inlet fogging and wet compression processes.  相似文献   

7.
This paper proposes a transcritical CO2 power cycle driven by solar energy while utilizing the cold heat rejection to an liquified natural gas (LNG) evaporation system. In order to ensure a continuous and stable operation for the system, a thermal storage system is introduced to store the collected solar energy and to provide stable power output when solar radiation is insufficient. A mathematical model is developed to simulate the solar-driven transcritical CO2 power cycle under steady-state conditions, and a modified system efficiency is defined to better evaluate the cycle performance over a period of time. The thermodynamic analysis focuses on the effects of some key parameters, including the turbine inlet pressure, the turbine inlet temperature and the condensation temperature, on the system performance. Results indicate that the net power output mainly depends on the solar radiation over a day, yet the system is still capable of generating electricity long after sunset by virtue of the thermal storage tank. An optimum turbine inlet pressure exists under given conditions where the net power output and the system efficiency both reach maximum values. The net power output and the system efficiency are less sensitive to the change in the turbine inlet temperature, but the condensation temperature exerts a significant influence on the system performance. The surface area of heat exchangers increases with the rise in the turbine inlet temperature, while changes in the turbine inlet pressure have no significant impact on the heat exchanging area under the given conditions.  相似文献   

8.
A thermodynamic model for open combined Brayton and inverse Brayton cycles is established considering the pressure drops of the working fluid along the flow processes and the size constraints of the real power plant using finite time thermodynamics in this paper. There are 11 flow resistances encountered by the gas stream for the combined Brayton and inverse Brayton cycles. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, combustion inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances control the air flow rate and the net power output. The relative pressure drops associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle. The analytical formulae about the relations between power output, thermal conversion efficiency, and the compressor pressure ratio of the top cycle are derived with the 11 pressure drop losses in the intake, compression, combustion, expansion, and flow process in the piping, the heat transfer loss to the ambient, the irreversible compression and expansion losses in the compressors and the turbines, and the irreversible combustion loss in the combustion chamber. The performance of the model cycle is optimized by adjusting the compressor inlet pressure of the bottom cycle, the air mass flow rate and the distribution of pressure losses along the flow path. It is shown that the power output has a maximum with respect to the compressor inlet pressure of the bottom cycle, the air mass flow rate or any of the overall pressure drops, and the maximized power output has an additional maximum with respect to the compressor pressure ratio of the top cycle. When the optimization is performed with the constraints of a fixed fuel flow rate and the power plant size, the power output and efficiency can be maximized again by properly allocating the fixed overall flow area among the compressor inlet of the top cycle and the turbine outlet of the bottom cycle.  相似文献   

9.
This study provides a computational analysis to investigate the effects of cycle pressure ratio, turbine inlet temperature (TIT), and ambient relative humidity (φ) on the thermodynamic performance of an indirect intercooled reheat regenerative gas turbine cycle with indirect evaporative cooling of the inlet air and evaporative aftercooling of the compressor discharge. Combined first and second‐law analysis indicates that the exergy destruction in various components of gas turbine cycles is significantly affected by compressor pressure ratio and turbine inlet temperature, and is not at all affected by ambient relative humidity. It also indicates that the maximum exergy is destroyed in the combustion chamber; which represents over 60% of the total exergy destruction in the overall system. The net work output, first‐law efficiency, and the second‐law efficiency of the cycle significantly varies with the change in the pressure ratio, turbine inlet temperature and ambient relative humidity. Results clearly shows that performance evaluation based on first‐law analysis alone is not adequate, and hence more meaningful evaluation must include second‐law analysis. Decision makers should find the methodology contained in this paper useful in the comparison and selection of gas turbine systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
发电燃气轮机效率分析及提高措施   总被引:1,自引:0,他引:1  
近10多年来地面燃气轮机技术迅速发展,其中一个重要方面是燃气轮机效率的提高。燃气轮机效率的提高与涡轮进口温度的提高、压气机涡轮气动特性的改进以及先进联合循环的使用分不开。本文通过对燃气轮机简单热力循环工作过程的分析,讨论了这些因素对燃气轮机效率的影响,并且简要介绍了近10多年来国内外在这些方面为提高燃气轮机效率而采取的一些措施。  相似文献   

11.
Integrating fuel cells with conventional gas turbine based power plant yields higher efficiency, especially solid oxide fuel cell (SOFC) with gas turbine (GT). SOFCs are energy efficient devices, performance of which are not limited to Carnot efficiency and considered as most promising candidate for thermal integration with Brayton cycle. In this paper, a novel and optimal thermal integration of SOFC with intercooled-recuperated gas turbine has been presented. A thermodynamic model of a proposed hybrid cycle has been detailed along with a novelty of adoption of blade cooled gas turbine model. On the basis of 1st and 2nd law of thermodynamics, parametric analysis has been carried out, in which impact of turbine inlet temperature and compression ratio has been observed on various output parameters such as hybrid efficiency, hybrid plant specific work, mass of blade coolant requirement and entropy generation rate. For optimizing the system performance, entropy minimization has been carried out, for which a constraint based algorithm has been developed. The result shows that entropy generation of a proposed hybrid cycle first increases and then decreases, as the turbine inlet temperature of the cycle increases. Furthermore, a unique performance map has also been plotted for proposed hybrid cycle, which can be utilized by power plant designer. An optimal efficiency of 74.13% can be achieved at TIT of 1800 K and rp,c 20.  相似文献   

12.
This paper mainly studied the solid oxide fuel cell (SOFC)–micro gas turbine (MGT) hybrid power system. The key parameters that greatly influence the overall system performance have been studied and optimized. The thermodynamic potential of improving the hybrid system performance by integrating SOFC with the advanced thermal cycle system is analyzed. The optimization rules of main parameters of SOFC‐MGT hybrid power system with the turbine inlet temperature (TIT) of MGT as a constraint condition are revealed. The research results show that TIT is a key parameter that limits the electrical efficiency of hybrid power system. With the increase of the cell number, both the power generation efficiency of the hybrid cycle power system and TIT increase. Regarding the hybrid system with the fixed cell number, in order to get a higher electrical efficiency, the operating temperature of SOFC should be enhanced as far as possible. However, the higher operating temperature will result in the higher TIT. Increasing of fuel utilization factor is an effective measure to improve the performance of hybrid system. At the same time, TIT increases slightly. Both the electrical efficiency of hybrid power system and TIT reduce with the increase of the ratio of steam to carbon. The achievements obtained from this paper will provide valuable information for further study on SOFC‐MGT hybrid power system with high efficiency. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
在深空探索快速发展的背景下,空间核能布雷顿循环系统因其能量密度高、环境适应性强、效率高等优势成为深空探测的理想方案之一。与地面发电站不同的是,空间能量转换系统要兼顾系统效率和轻量化的要求,而系统关键参数对系统的效率和质量等性能有着重要的影响。因此,开展热力学参数分析和优化对空间核能布雷顿循环系统的设计具有重要意义。通过建立空间核能布雷顿循环的数学模型和系统部件的质量计算模型,以“质量比功率”为性能优化目标,研究压气机进口温度、压气机压比和涡轮进口温度等参数对系统性能的影响,并采用正交实验法进行优化分析。结果表明,压气机进口温度和压气机压比存在最优值使质量比功率取得最小值,涡轮进口温度升高有利于提高系统的发电效率和降低系统质量。涡轮进口温度的最优值为1 500 K,压气机进口温度的最优值范围为416 ~ 508 K,压气机压比的最优值范围为2.4 ~ 3.1。  相似文献   

14.
建立了开式燃气轮机中冷回热再热(ICRR)循环有限时间热力学模型,导出了循环功率和效率解析式,优化了气流沿通流部分的压降(或低压压气机进口空气质量流率)和中间压比,得到最大功率;并在给定燃油流率的情况下,优化了气流沿通流部分的压降和中间压比,得到最大热效率,进一步在给定低压压气机进口和动力涡轮出口总面积的情况下,优化两者面积分配比,得到双重最大热效率.  相似文献   

15.
The integration of an aqua‐ammonia inlet air‐cooling scheme to a cooled gas turbine‐based combined cycle has been analyzed. The heat energy of the exhaust gas prior to the exit of the heat recovery steam generator has been chosen to power the inlet air‐cooling system. Dual pressure reheat heat recovery steam generator is chosen as the combined cycle configuration. Air film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor–pressure ratio, compressor inlet temperature, turbine inlet temperature, ambient relative humidity, and ambient temperature on performance parameters of plants has been carried out. It has been observed that vapor absorption inlet air cooling improves the efficiency of gas turbine by upto 7.48% and specific work by more than 18%, respectively. However, on the adoption of this scheme for combined cycles, the plant efficiency has been observed to be adversely affected, although the addition of absorption inlet air cooling results in an increase in plant output by more than 7%. The optimum value of compressor inlet temperature for maximum specific work output has been observed to be 25 °C for the chosen set of conditions. Further reduction of compressor inlet temperature below this optimum value has been observed to adversely affect plant efficiency. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A new combined power and ejector–absorption refrigeration cycle is proposed, which combines the Rankine cycle and the ejector–absorption refrigeration cycle, and could produce both power output and refrigeration output simultaneously. This combined cycle, which originates from the cycle proposed by authors previously, introduces an ejector between the rectifier and the condenser, and provides a performance improvement without greatly increasing the complexity of the system. A parametric analysis is conducted to evaluate the effects of the key thermodynamic parameters on the cycle performance. It is shown that heat source temperature, condenser temperature, evaporator temperature, turbine inlet pressure, turbine inlet temperature, and basic solution ammonia concentration have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. It is evident that the ejector can improve the performance of the combined cycle proposed by authors previously.  相似文献   

17.
A solar-driven Kalina cycle is examined to utilize solar energy effectively due to using ammonia–water's varied temperature vaporizing characteristic. In order to ensure a continuous and stable operation for the system, a thermal storage system is introduced to store the collected solar energy and provide stable power when solar radiation is insufficient. A mathematical model is developed to simulate the solar-driven Kalina cycle under steady-state conditions, and a modified system efficiency is defined to evaluate the system performance over a period of time. A parametric analysis is conducted to examine the effects of some key thermodynamic parameters on the system performance. The solar-driven Kalina cycle is also optimized with the modified system efficiency as an objective function by means of genetic algorithm under the given conditions. Results indicate that there exists an optimal turbine inlet pressure under given conditions to maximize the net power output and the modified system efficiency. The net power output and the modified system efficiency are less sensitive to a change in the turbine inlet temperature. An optimal basic solution ammonia fraction can be identified that yields maximum net power output and modified system efficiency. The optimized modified system efficiency is 8.54% under the given conditions.  相似文献   

18.
The gas turbine power output and efficiency decrease with increasing ambient temperature. With compressor inlet air cooling, the air density and mass flow rate as well as the gas turbine net power output increase. The inlet cooling techniques include vapor or absorption refrigeration systems, evaporative cooling systems and thermal energy storage (TES) systems. In this paper the thermoeconomic analysis of ice (latent) thermal energy storage system for gas turbine inlet cooling application was performed. The optimum values of system design parameters were obtained using genetic algorithm optimization technique. The objective function included the capital and operational costs of the gas turbine, vapor compression refrigeration system, without (objective function I) and with (objective function II) corresponding cost due to the system exergy destruction. For gas turbines with net power output in the range of 25-100 MW, the inlet air cooling using a TES system increased the power output in the range of 3.9-25.7%, increased the efficiency in the range 2.1-5.2%, while increased the payback period from about 4 to 7.7 years.  相似文献   

19.
A combined power and refrigeration cycle is proposed, which combines the Rankine cycle and the absorption refrigeration cycle. This combined cycle uses a binary ammonia–water mixture as the working fluid and produces both power output and refrigeration output simultaneously with only one heat source. A parametric analysis is conducted to evaluate the effects of thermodynamic parameters on the performance of the combined cycle. It is shown that heat source temperature, environment temperature, refrigeration temperature, turbine inlet pressure, turbine inlet temperature, and basic solution ammonia concentration have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. A parameter optimization is achieved by means of genetic algorithm to reach the maximum exergy efficiency. The optimized exergy efficiency is 43.06% under the given condition.  相似文献   

20.
Sanjay 《Energy》2011,36(1):157-167
The paper deals with second law thermodynamic analysis of a basic gas turbine based gas-steam combined cycle. The article investigates the effect of variation of cycle parameters on rational efficiency and component-wise non-dimensionalised exergy destruction of the plant. Component-wise inefficiencies of the combined cycle have been quantified with the objective to pin-point the major sources of exergy destruction. The parameter that affects cycle performance most is the TIT (turbine inlet temperature). TIT should be kept on the higher side, because at lower values, the exergy destruction is higher. The summation of total exergy destruction of all components in percentage terms is lower (44.88%) at TIT of 1800 K & rp,c = 23, as compared to that at TIT = 1700 K. The sum total of rational efficiency of gas turbine and steam turbine is found to be higher (54.91%) at TIT = 1800 K & rp,c = 23, as compared to that at TIT = 1700 K. Compressor pressure ratio also affects the exergy performance. The sum total of exergy destruction of all components of the combined cycle plant is lower (44.17%) at higher value of compressor pressure ratio (23)& TIT = 1700 K, as compared to that at compressor pressure ratio (16). Also exergy destruction is minimized with the adoption of multi-pressure-reheat steam generator configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号