首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
曹海龙  师俊平 《机电工程》2020,37(8):875-881
针对润滑状态下连接界面的接触问题,对流体动力油膜和粗糙表面的摩擦特性进行了研究,提出了一种点接触粗糙表面摩擦行为的预估方法。首先,基于载荷分配思想建立了粗糙表面摩擦模型,利用Hertz理论中的最大接触压力分别确定了微凸体高度分布服从高斯分布、指数分布以及三角分布时粗糙表面的接触载荷;然后,通过弹性流体动力润滑膜厚公式求解了流体动力油膜承担的载荷;最后,绘制了滑动速度-摩擦系数曲线,模拟了整个润滑过程中连接界面摩擦系数的变化。研究结果表明:仿真结果与试验数据具有一致性,且不同法向载荷、粗糙表面形貌、润滑剂粘度以及假设的微凸体高度分布对摩擦系数的影响程度不同;微凸体假设为高斯分布时,仿真结果更接近试验数据;该方法可以为机械结构的润滑状态预测提供理论基础。  相似文献   

2.
基于平均流量模型和微凸体接触模型,研究混合润滑状态下织构表面的摩擦特性,通过数值求解得到Stribeck曲线,分析法向载荷、润滑油黏度、表面粗糙度、方向因子和倾斜角对摩擦因数及名义摩擦副间隙等摩擦性能参数的影响规律。结果表明:混合润滑条件下,随着载荷的减小或润滑油黏度的增大,摩擦因数减小,名义摩擦副间隙增大,混合润滑转变为流体润滑时的临界转速降低;随着表面粗糙度的增大,摩擦因数和名义摩擦副间隙均增大,临界转速升高;随着倾斜角的减小或方向因子的增大,摩擦因数减小,名义摩擦副间隙增大,并且倾斜角越小,临界转速越低。  相似文献   

3.
基于微凸体侧接触模型,推导了机械密封端面混合摩擦热计算式,研究了转速、摩擦间隙和粗糙度对常用机械密封端面混合摩擦热的影响。结果表明:常用混合摩擦状态下的机械密封端面微凸体接触多为第Ⅱ类弹塑性接触;当转速ω ≤ 2 800 r/min时,微凸体接触摩擦热所占比重较大,但随着转速上升,黏性摩擦热比重逐渐增大至百分之百;随着摩擦间隙d的增大,黏性摩擦热和微凸体接触摩擦热曲线均呈下降趋势,当d ≥ 2.8σ时,微凸体接触摩擦热减小至零,而黏性摩擦热随d变化不大;随着粗糙度的增加,端面摩擦热先下降后上升,在近1.6 μm处最小,因而在机械密封设计时,存在某一粗糙度使混合摩擦热最少。  相似文献   

4.
张盛为 《润滑与密封》2023,48(12):23-31
针对边界膜对摩擦副润滑状态的影响,提出一种能够综合反映压力及剪切速率对边界膜失效综合影响的边界膜强度模型,并基于润滑状态测试结果通过拟合获得模型参数;将该边界膜强度模型与流体动压润滑模型、粗糙表面接触模型耦合,建立考虑边界膜强度的混合润滑模型,并通过轴瓦摩擦实验机润滑测试结果对模拟结果进行验证。和现有典型混合润滑模型相比较,该混合润滑模型可以更准确地反映摩擦副的实际润滑状态以及摩擦因数变化规律。运用考虑边界膜强度的混合润滑模型分析轴瓦零件润滑状态转化特性和机制。结果表明:在存在边界润滑的混合润滑条件下,当加载力小于临界载荷,边界膜几乎未发生破裂,摩擦因数随载荷增加缓慢变大,其数值均较小;当加载力加至临界载荷,边界膜破裂,摩擦副微凸体接触区域出现干摩擦,摩擦因数出现突然增加,表明该摩擦副由边界润滑为主的混合润滑状态过渡到以干摩擦为主的润滑状态。  相似文献   

5.
在不同润滑油下齿轮锻造材料摩擦特性研究   总被引:1,自引:0,他引:1  
采用销-盘摩擦副接触方式在不同流体润滑及载荷下,对齿轮锻造用SCr420H合金结构钢进行摩擦试验.采用齿轮油、石蜡油以及加工润滑油润滑.利用在不同润滑及载荷下随速度变化的摩擦因数变化曲线图分析摩擦材料表面摩擦特性.利用Stribeck曲线和摩擦表面形貌SEM照片分析在不同润滑油及载荷下的摩擦状态和摩擦行为.结果表明:SCr420H合金结构钢在最低动黏度的石蜡油润滑下摩擦因数最高,且随速度增大而减少;在齿轮油和加工润滑油润滑下,最低载荷时具有最高的摩擦因数,但摩擦因数随载荷增大而减少,速度对摩擦因数影响不大;在齿轮油和加工润滑油润滑下摩擦副处于流体润滑状态,在石蜡油润滑下显示临界润滑摩擦状态.  相似文献   

6.
采用数值模拟方法,分析在不同速度和不同结构参数条件下微凸体织构的摩擦副润滑过程,研究在流体润滑条件下摩擦副表面的微凸体织构诱导空化效应的规律。结果表明:增加表面之间相对运动速度、微凸体织构的宽度或高度、微织构前段和后端的角度,均能导致空化区域面积增加,〖JP2〗使诱导空化现象更加明显;空化效应的出现抑制了微凸体后端负压区压力的降低,使得摩擦副的承载能力提高;空化效应可使界面之间由液体润滑转变为局部的气体润滑,使得界面之间摩擦因数的数值明显减小;考虑空化效应时,具有微凸体织构的摩擦副的承载力比不考虑空化效应时提高了35~74倍,摩擦因数降低了97.5%~98.7%。微凸体织构诱导产生的空化效应对提升承载力与降低摩擦因数的作用,明显大于微织构形成的流体动压作用,因此可以认为微织构诱导产生空化效应是微织构摩擦表面的一种重要承载机制。  相似文献   

7.
为研究混合润滑状态下粗糙表面基体变形对结合面接触特性的影响,建立了考虑基体变形的结合面接触刚度模型。首先,通过单微凸体-基体系统模型分别求解微凸体和基体的接触刚度,利用不动点迭代法获得微凸体真实变形量;其次,基于分形理论建立结合面固体接触刚度模型,通过固体接触刚度获得液体介质的接触刚度。根据仿真结果分析了基体变形、粗糙表面形貌以及润滑介质对结合面接触特性的影响规律。结果表明:当真实接触面积一定时,通过新模型计算的法向载荷小于忽略基体变形的模型;在接触前期,结合面的接触刚度主要由液体介质接触刚度主导,随着真实接触面积的增加,液体接触刚度占总刚度的比率越来越小,最后转变为固体的接触刚度主导结合面的接触刚度。该模型为研究混合润滑状态下结合面的接触特性提供了理论基础。  相似文献   

8.
针对螺旋槽旋转密封润滑状态随转速变化,建立分析润滑特性的数学模型。采用有限体积法对雷诺方程进行数值离散,基于贴体坐标变换与质量守恒边界条件,获得了流体润滑模型。采用分形接触模型描述混合润滑状态时的粗糙峰接触特性。数学模型能够对混合润滑和流体润滑状态下的润滑特性进行模拟,获得了全转速范围内摩擦因数的变化规律,并得到了试验验证。得到了脱开转速,并拟合脱开转速随入口油压变化的规律曲线,利用该曲线能有效判断密封摩擦副润滑状态转变的转速。  相似文献   

9.
杜媛英  李明 《润滑与密封》2019,44(3):99-104
当船舶艉轴承供水系统出现故障或轴承过载时,金属轴颈与橡胶轴承之间会发生局部接触而处于干摩擦状态下。为研究金属轴颈表面粗糙度对水润滑橡胶轴承干摩擦特性的影响,采用TIME3230表面粗糙度测量仪对金属轴颈表面微凸体进行测量,得到金属轴颈表面微凸体的位置参数分布曲线,并对其进行去噪处理;利用傅立叶变换重新构造去噪后的金属轴颈表面粗糙度分布,并依据理论计算金属轴颈-橡胶轴承摩擦副的摩擦因数。金属轴颈-橡胶轴承摩擦副的摩擦因数计算结果与实际情况吻合,说明建立的轴颈表面粗糙度分布模型合理。分析结果表明:在干摩擦状态下,金属轴颈-橡胶轴承摩擦副的摩擦因数随着表面粗糙度函数波幅的增大呈线性增大趋势,随着粗糙度分布函数的特征波长系数的增大呈非线性增大;润滑流动方向顺着加工纹理方向时,摩擦因数比垂直加工纹理方向和与加工纹理呈45°时的摩擦因数都小。因此,选择合理的轴承表面粗糙度的幅值和波长可以提高金属轴颈-橡胶轴承摩擦副的摩擦润滑性能;沿加工纹理加工、装配金属轴颈-橡胶轴承摩擦副,可降低摩擦因数。  相似文献   

10.
基于分形理论的滑动摩擦表面接触力学模型   总被引:11,自引:0,他引:11  
依据分形理论,考虑微凸体变形特征及摩擦作用的影响建立滑动摩擦表面接触力学模型。采用一个三次多项式来表达弹塑性变形微凸体的接触压力与接触面积的关系,从而满足在变形状态转变临界点处的微凸体接触面积与接触压力转化皆是连续和光滑的条件。推导出滑动摩擦表面临界弹性变形微接触面积、临界塑性变形微接触面积、量纲一真实接触面积的数学表达式。理论计算结果表明,表面形貌一定时,真实接触面积随着载荷的增大而增大;载荷一定时,真实接触面积随着特征尺度系数的增大而减小,随着分形维数的增大先增大后减小;当表面较粗糙时,摩擦因数对真实接触面积的影响很小;随着表面光滑程度的增大,摩擦因数对真实接触面积的影响增大,真实接触面积随着摩擦因数的增大而增大,特别是当摩擦因数较大时,真实接触面积增大的幅度也较大。接触力学模型的建立,为研究滑动摩擦表面间的摩擦磨损性能提供了依据。  相似文献   

11.
This paper reports on the theoretical analysis of mixed lubrication for the piston ring. The analytical model is presented by using the average flow and asperity contact model. The cyclic variations of the nominal minimum oil film thickness are obtained by numerical iterative method. The total friction is calculated by using the hydrodynamic and asperity contact theory. The effects of the roughness height, pattern, and engine speed on the nominal minimum film thickness, friction force, and frictional power losses are investigated. As the roughness height increases, the nominal oil film thickness and total friction force increase. Also, the effect of the surface roughness on the boundary friction is dominant at low engine speed and high asperity height. The longitudinal roughness pattern shows lower mean oil film pressure and thinner oil film thickness compared to the case of the isotropic and transverse roughness patterns.  相似文献   

12.
A simple and robust friction model is proposed for cold metal rolling in the mixed lubrication regime, based on physical phenomena across two length scales. At the primary roughness scale, the evolution of asperity contact area is associated with the asperity flattening process and hydrodynamic entrainment between the roll and strip surfaces. The friction coefficient on the asperity contacts is related to a theoretical oil film thickness and secondary-scale roll surface roughness. The boundary friction coefficient at the “true” asperity contacts is associated with tribo-chemical reactions between fresh metal, metal oxide, boundary additives, the tool and any transfer layer on the tool. The asperity friction model is verified by strip drawing simulations under thin film lubrication conditions with a polished tool, taking the fitting parameter of the boundary lubrication friction factor on the true contact areas equal to 0.1. Predicted values of average friction coefficient, using a boundary friction factor in the range 0.07–0.1, are in good agreement with measurements from laboratory and industrial rolling mill trials.  相似文献   

13.
A model for mixed lubrication, assuming that the total normal load applied to the plane of the lubricated surfaces is carried partly by the hydrodynamic action of the lubrication film and partly by asperity contacts and that the total friction force between the lubricated surfaces is partly due to viscous friction and partly to asperity contacts, was used to develop a numerical solution for pressure distribution in a bearing experiencing mixed lubrication. The geometry treated and the pressure distribution obtained were for a simple slider bearing, but the method could easily be extended to other shapes. The model is based on measured roughness of a real surface. Real load carrying capacity and drag can therefore be determined since they are related directly to bearing pressure distribution  相似文献   

14.
When studying the tribological behaviors of a Cu-based friction pair in different lubrication regimes, calculation of the real contact area of asperity contacts is crucial but difficult. In this work, a mixed lubrication model in plane contacts is developed, and pin-on-disc tests are carried out. The real contact area ratio, load sharing ratio, and friction coefficient are investigated. Effects of sliding velocity, temperature, and pressure are considered. The results show that when the maximum contact area ratio is about 14.6%, the load sharing ratio of asperity contacts is about 95%. The friction coefficient obviously increases from less than 0.04 to about 0.15 as the regime changes from hydrodynamic to boundary lubrication. Asperities have a significant influence on the local lubrication of a Cu-based friction pair, and the action of hydrodynamic pressure cannot be ignored.  相似文献   

15.
The Greenwood and Williamson theory of random rough surfaces in contact has been combined with established elastohydrodynamic theory to provide a theoretical approach to highly loaded lubricated contacts in which the load is shared between hydrodynamic pressure and asperity contact. It is shown that, provided a major part of the load is carried by elastohydrodynamic action, the separation between the two rough surfaces is given (to a first approximation) by the film thickness which would exist between two smooth surfaces under the same conditions of load, speed and lubricant. It then follows that the asperity pressure, both real and apparent, is determined primarily by the ratio of theoretical film thickness to the combined roughness of the two surfaces (ho/σ). A corollary of this result is that an increase in total load, which has only a small influence on the film thickness, is carried by an increase in fluid pressure and only gives rise to a small increase in asperity contact pressure.  相似文献   

16.
为准确研究斯特封高速摩擦与密封特性,基于混合润滑理论,综合流体空化效应、密封接触变形和微观粗糙峰接触等因素影响,建立了斯特封摩擦与密封的数值计算模型。研究了往复运动速度和密封压力对油膜厚度、摩擦力和泄漏量的影响,搭建了往复密封试验台来验证模型的准确性。结果表明:计算摩擦力与实验摩擦力相近。混合润滑模型能更好地模拟高速柱塞副斯特封的摩擦与密封特性,油膜压力与粗糙度接触压力共同影响密封性能,但粗糙度接触摩擦起主导作用。  相似文献   

17.
凸轮-滚轮副是大功率船用发动机配气机构的关键摩擦副,除受到弹簧力和自身的惯性力之外,还受到来自喷油器的极高燃油压力,工作条件极为苛刻。为了分析该摩擦副的性能,建立船用发动机重载工况下凸轮-滚轮副的混合热弹流润滑模型,计算燃油压力作用下的摩擦副油膜润滑、摩擦温升和磨损性能。结果表明:喷油器的燃油压力会显著降低凸轮-滚轮摩擦副之间的油膜厚度,同时产生较为严重的微凸体接触;随着环境温度的提高,凸轮-滚轮副的油膜厚度以及油膜温升会有所下降,而微凸体接触压力、摩擦力以及摩擦功率均会显著增加;滚轮打滑会造成凸轮-滚轮摩擦副的油膜厚度下降,同时导致油膜温升以及微凸体接触压力增大和并且致使表面磨损显著加剧。  相似文献   

18.
Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators,especially in high parameter hydraulic systems.Only elastic deformations of hydraulic reciprocating seals were discussed,and hydrodynamic effects were neglected in many studies.The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals,and few of these models had been simultaneously validated through experiments.By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal,a numerical fluid-solid interaction model consisting of fluid lubrication,contact mechanics,asperity contact and elastic deformation analyses is constructed with an iterative procedure.With the SRV friction and wear tester,the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal.The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition.The experimental result is used to validate the fluid-solid interaction model.Based on the model,The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction,mixed lubrication and full film lubrication conditions,including of the contact pressure,film thickness,friction coefficient,liquid film pressure and viscous shear stress in the sealing zone.The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal,and can also be widely used to study other hydraulic reciprocating seals.  相似文献   

19.
Friction Reduction in Mixed Lubrication   总被引:1,自引:0,他引:1  
Minimization of frictional losses in the drivetrain of heavy-duty vehicles is important from both consumer satisfaction and environmental perspectives. Approaches to friction reduction in these components can be evaluated using simulation-based investigations. However, nearly all drivetrain components operate in the mixed lubrication regime which is difficult to model because both hydrodynamic lubrication and surface contact are significant and therefore, the total friction consists of hydrodynamic friction due to lubricant shearing and boundary film friction at asperity contact locations. Recent advances in simulation methods for mixed elastohydrodynamic lubrication (EHL) have enabled improved virtual design tools, such as those developed by Zhu and Hu and further improved by Liu et al. Here, these simulation tools are used to evaluate friction reduction and predict the effects on a mixed EHL interface under severe operating conditions. Three practical means of friction reduction are discussed based on the experimentally validated mixed lubrication friction model and its predictions made for representative, sample cases.  相似文献   

20.
A deterministic numerical model has been developed for simulation of mixed lubrication in point contacts. The nominal contact area between rough surfaces can be divided into two parts: the regions for hydrodynamic lubrication and asperity contacts (boundary lubrication). In the area where the film thickness approaches zero the Reynolds equation can be modified into a reduced form and the normal pressure in the region of asperity contacts can be thus determined. As a result, a deterministic numerical solution for the mixed lubrication can be obtained through a unite system of equations and the same numerical scheme. In thermal analysis, the solution for a moving point heat source has been integrated numerically to get surface temperature, provided that shear stresses in both regions of hydrodynamic lubrication and asperity contacts have been predetermined. A rheology model based on the limit shear stress of lubricant is proposed while calculating the shear stress, which gives a smooth transition of friction forces between the hydrodynamic and contact regions. The computations prove the model to be a powerful tool to provide deterministic solutions for mixed lubrication over a wide range of film thickness, from full-film to the lubrication with very low lambda ratio, even down to the region where the asperity contact dominates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号