首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sensitization by chromium depletion due to chromium carbide precipitation at grain boundaries in austenitic stainless steels can not be prevented perfectly only by previous conventional techniques, such as reduction of carbon content, stabilization-treatment, local solution-heat-treatment, etc. Recent studies on grain boundary structure have revealed that the sensitization depends strongly on grain boundary character and atomic structure, and that low energy grain boundaries such a~ coincidence-site-lattice (CSL) boundaries have strong resistance to intergranular corrosion. The concept of grain boundary design and control has been developed as grain boundary engineering (GBE). GBEed materials are characterized by high frequencies of CSL boundaries which are resistant to intergranular deterioration of materials, such as intergranular corrosion. A thermomechanical treatment was tried to improve the resistance to the sensitization by GBE. A type 304 austenitic stainless steel was cold-rolled and solution-heat-treated, and then sensitization-heat-treated. The grain boundary character distribution was examined by orientation imaging microscopy (OIM). The intergranular corrosion resistance was evaluated by electrochemical potentiokinetic reactivation (EPR) and ferric sulfate-sulfuric acid tests. The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction The frequency of CSL boundaries indicated a maximum at the small reduction. The ferric sulfate-sulfuric acid test showed much smaller corrosion rate in the thermomechanical-treated specimen than in the base material. A high density of annealing twins were observed in the thermomechanical-treated specimen. The results suggdst that the therrmomechanical treatment can introduce low energy segments in the grain boundary network by annealing twins and can arrest the percolation of intergranular corrosion from the surface. The effects of carbon content and other minor elements on optimization in grain boundary character distribution (GBCD) and thermomechanical parameters were also examined during GBE.  相似文献   

2.
The effects of Laves phase formation and growth on creep rupture behaviors of P92 steel at 883 K were studied.The microstructural evolution was characterized using scanning electron microscopy and transmission elec-tron microscopy.Kinetic modeling was carried out using the software DICTRA.The results indicated Fe2 (W,Mo) Laves phase has formed during creep with 200 MPa applied stress at 883 K for 243 h.The experimental results showed a good agreement with thermodynamic calculations.The plastic deformation of laths is the main reason of creep rupture under the applied stress beyond 160 MPa,whereas,creep voids initiated by coarser Laves phase play an effective role in creep rupture under the applied stress lower than 160 MPa.Laves phase particles with the mean size of 243 nm lead to the change of creep rupture feature.Microstructures at the vicinity of fracture surface,the gage portion and the threaded ends of creep rupture specimens were also observed,indicating that creep tensile stress enhances the coarsening of Laves phase.  相似文献   

3.
The temperature and residual stress fields of a medium-high carbon steel, welded by a cracking resistance electrode with rare earth (RE) oxide, were measured by thermo-vision analyzer and X-ray stress analyzer respectively. Meanwhile, the martensitic transformation temperatures of matrix, hard-face welding (hardfacing) metal welded by conventional hardfacing electrode and that welded by cracking resistance electrode with RE oxide were determined. According to the experimental data and the thermo-physical, mechanical parameters of materials, finite element method (FEM) of temperature and stress fields was established. In this FEM, the effect of martensitic transformation on residual stress of hardfacing metal of medium-high carbon steel was taken into account. The results show that, by adding RE oxide in the coat of hardfacing electrode, the martensitic transformation temperature can be decreased, so that the residual tensile stress on the dangerous position can be decreased. Therefore, the cracking resistance of hardfacing metal can be improved.  相似文献   

4.
Effect of Rare Earths on Hot Cracking Resistant Property of Mg-Al Alloys   总被引:2,自引:0,他引:2  
The effect of rare earths (RE) ranging from 0.1% to 1.2%(mass fraction) on hot cracking resistant property of Mg-Al alloys was investigated. The results show that hot cracking resistant property of Mg-Al alloys remarkably declines with an increase of RE addition. The causes of the decline are as follows: First, grain coarsening of Mg-Al alloys caused by RE addition reduces the fracture strain required for hot crack initiation. Second, RE reduces the eutectic microstructure of Mg- Al alloys, and as a result, shortens the time that the feeding channel remains open, making it difficult to feed the alloy. Furthermore, RE elevates the eutectic reaction temperature, which leads to the decrease in the strength of the interdendritic liquid film at the late stage of solidification. Third, when a-Mg dendrites form continuous skeletons, the interdendritic Al11 RE3 phase tends to block the feeding channels and increases the difficulty of feeding. Last, the shrinkage ratio discrepancy between Al11RE3 phases and α-Mg matrix is prone to cause shrinkage stress and promote hot crack initiation.  相似文献   

5.
To characterize the long-term service performance and predict the lifetime of heat-resistant steel applications,more than 300 test pieces can be loaded simultaneously at Baosteel to determine the relationship between stress and rupture duration at specific temperatures. In addition,versatile testing methods have been established that evaluate creep-rupture,stress-relaxation,and creep-fatigue,as well as state-of-the-art tensile testing at hyper-high temperatures exceeding 2 100 ℃. Based on the Larson-M iller method,according to API 530,the accumulation of large volumes of data with respect to stress,temperature,and rupture time of actually tested steels ensures the reliability of predicting the allowable working stress over 100 000 h at any given temperature. For examples,the stress tendencies against rupture time of T/P91 and T/P92 steel tubes,as obtained by Baosteel,are consistent with those from NIMS and ECCC. As an accredited provider of the Proficiency Testing schemes in ISO/IEC 17025 and ISO/IEC 17043,Baosteel has periodically organized national proficiency testing with respect to creep and rupture,thereby providing an efficient way for all parties to assess their technical competence when performing uniaxial creep testing by the methods in ISO 204 and ASTM E139.  相似文献   

6.
The influence of rare earths(RE) on solidification behavior of a high speed steel for roll was investigated by using differential scanning calorimetry(DSC) in combination of microstructure analysis.It was found that the sequence of solidification was L→γ,L→γ+MC,L→γ+M2C,L→γ+M6C,respectively.The start temperature and the latent heat liberated by unit mass of L→γ and L→γ+MC increased with increase of RE addition,indicating that RE could trigger the crystallization of the primary γ and the MC carbide more effectively.The promoting effect of RE on the heterogeneous nucleation was believed to be an important cause of this effect.Grain refinement,discontinuous network of eutectic carbides and disperse and finer MC were observed in the samples with RE addition,moreover,RES could act as the heterogeneous nucleus of the MC.RE addition was favorable for stable M6C at the expense of the metastable M2C.  相似文献   

7.
The oxidation resistance of 5Cr21Mn9Ni4N steel micro-alloying by RE at 700 - 900 ℃ was investigated. The results indicate that oxidation exponent n and oxidation activation energy are increased, and oxidation velocity constant kp is decreased when 0.2% RE is added in 5Cr21Mn9Ni4N steel. The addition of RE elements does not alter phase constitution of oxidation scale, however it improves the configuration of oxidation scale, and increases thermal stability and adhesivity of oxidation scale, which results in the raise of oxidation resistance of 5Cr21Mn9Ni4N steel at high temperature. The oxidation scale constitutes of refractory steel transfer from manganic oxide mostly to ferric oxide mostly with the increase of temperature, which leads to descend of compactness and desquamation resistance of oxidation scale. The mass increase of ferric oxide in the oxidation scale and the looseness of oxidation scale are the main reason to descend the oxidation resistance of refractory steel.  相似文献   

8.
The effect of rare earth(RE) on Mo partitioning and resultant mechanical and microstructural behavior of a duplex stainless steel during hot working condition was investigated. It was found that RE effect was sensitive to temperature. At the high temperature, the development of dynamic recovery(DRV) in α phase was slowed down while the dynamic recrystallization(DRX) process in γ phase was accelerated by RE, whereby both work hardening rate(at low strain) and dynamic softening rate(at high strain) increased and moreover, the discrepancy on the hardness of the both phase reduced. Whereas at the low temperature, the effect of RE was opposite as compared with those in the high temperature. Mo partitioning analysis by EPMA indicated that RE enhanced the partitioning of Mo in α phase while reduced Mo concentration in γ phase at higher temperature whereby the mismatch between two phases could be improved indicated by the elimination of voids and cracks at α/γ interface, but it was contrary to that at the low temperature. Mo partitioning was believed to be an important cause for the RE effect on the differences of mechanical and microstructural behavior. Also this result provided a reasonable evidence for micro-alloying of RE in DSSs.  相似文献   

9.
The objective of this study is to understand and quantify the role of the coincidence-site-lattice boundary (CSLB) population on creep deformation of Ni-16Cr-9Fe at 360 °C. It is hypothesized that an increase in the CSLB population decreases the annihilation rate of dislocations in the grain boundary, leading to an increase in the internal stress and a decrease in the effective stress. The result is a reduction in the creep strain rate. The role of CSLBs in deformation is, thus, to increase the internal stress by trapping run-in lattice dislocations at the grain boundaries as extrinsic grain boundary dislocations (EGBDs), creating backstresses on following dislocations rather than annihilating them, as in the case of high-angle boundaries (HABs). The hypothesis was substantiated by showing (1) that dislocation absorption kinetics differ substantially between a CSLB and an HAB, and (2) that the CSLB fraction strongly affects the internal stress in the solid. Dislocation absorption kinetics were measured by comparing EGBD density in transmission electron microscopy (TEM). Results showed that CSLBs contain an EGBD density which is 3 times higher than HABs at 1.25 pct strain. Internal stress was measured by the stress dip test and was found to be ≈ 30 MPa higher in the CSLB-enhanced sample. Steady-state creep rates of Ni-16Cr-9Fe in 360 °C argon were also found to be strongly affected by the grain boundary character distribution. Increasing the CSLB fraction by approximately a factor of 2 resulted in a decrease in steady-state creep rates by a factor of 8 to 26 in coarse-grain (330 μm) samples and a factor of 40 to 66 in small-grain (35 μm) samples. It is postulated that annihilation of EGBDs only occurs at triple lines where at least two HABs intersect. By using a geometric relationship to evaluate the probability of EGBDs annihilating at a triple line, the model predicts a non-linear dependence of the creep rate with CSLB fraction, yielding excellent correlation with measurement. The model provides a physical basis for measurements which show that increasing the CSLB fraction by only moderate amounts can greatly reduce the steady-state creep rate in Ni-16Cr-9Fe.  相似文献   

10.
An apparatus of zone melting unidirectional solidification with a steep temperature gradient andan impact fatigue tester were used.The effect of RE elements on the morphology of carbides and the impactfatigue properties of the low Cr white cast iron were investigated.Experimental results showed that the modi-fying effect of RE elements was remarkable on the M3C carbides.With the addition of RE elements in thelow Cr iron,a lot of plate-like carbides were transformed into lath-like and rod-like ones.The higher thecontent of RE elements was,the more was the fraction of the lath-like and rod-like carbides.In the low Crwhite cast iron,the RE modifying agent can efficiently increase the impact fatigue resistance and decrease thecrack growth rate and delay the time of incipient cracking.With the increase of the content of RE elements inthe low Cr cast iron,the impact fatigue resistance increased greatly and the crack growth rate decreased rap-idly.  相似文献   

11.
The pack cementation was employed to produce rare earth modified chromium coatings on P110 steel aiming at improving its performance and increasing the usage lifetime during operation. The orthogonal array design (OAD) was applied to set experiments. Contents of NH4Cl, types of RE, contents of RE, test temperature and soaking time were the main factors, and each factor was endowed with four levels. While the range analysis and analysis of variance were used to investigate the results of OAD tests on thickness and wear resistance. The results indicated that for a promising coating with higher thickness value and excellent anti-wear property, the test temperature was the most significant process factor. The potential promising conditions for chromizing treatment were: adding 1% NH4Cl and 1% LaCl3, maintaining the test temperature at 1000 oC for 8 h. The results of verification showed that the coating formed under the optimal process parameter had a valid thickness of 28 μm and a reduction of 0.32 mg in wear resistance test.  相似文献   

12.
In this study,the scale and internal oxidation of hot-rolled ultra-high strength steel sheets were characterized.It was found that both the formation of the scale and the internal oxidation of Si and Mn depended on the coiling temperature and position of the steel sample on the strip coil.At a relatively high coiling temperature,a large amount of internal oxidation was observed on the samples cut from the middle of the coil.The depth of the internal oxidation zone exceeded 10 μm and a thin iron layer covering the scale was observed in some cases.Pickling and cold-rolling experiments were conducted on selected samples.Scale pickling was found to be greatly delayed by the formation of an iron layer,which frequently resulted in under-pickled defects.In addition,pickling of the entire internal oxidation zone was difficult,except at the grain boundaries,where the degree of internal Si and Mn oxidation was enriched.The surface of the cold-rolled steel sheet was ruined by the remaining oxidation zone in the subsurface of the pickled steel.The internal oxidation of hot-rolled ultra-high strength steel must be precisely controlled to improve the subsequent surface quality of cold-rolled steel.  相似文献   

13.
In order to develop a comprehensive understanding about the effect of different holding time under rapid heating on the microstructural evolution and mechanical properties of transformation-induced plasticity (TRIP)steel, continuous annealing process simulations were performed using a thermal system with resistance heating method. The morphology and distribution of all phases present in the microstructure and the mechanical properties of TRIP steel were revealed.It appeared that the final tensile strength of the TRIP steel increased and retained austenite car-bon content decreased with increasing holding time.An overlap between ferrite recrystallization and austenitization was observed during intercritical holding.In addition,the work hardening of the samples was evaluated by calculat-ing the instantaneous n value as a function of the true strain.The difference in work hardening behavior corresponds to the rate of the retained austenite transformation during straining,which can be attributed to the carbon content and the morphology of the retained austenite.  相似文献   

14.
The low Ni steel modified hy rare earth(3Cr24NiTSiN with an addition of 0.3% Ce)for furnace roller hasbeen developed.Due to the RE(rare earth)addition,a dense oxide film is formed on the steel surface at hightemperature,and the oxidation rate is decreased.This film has so good adhesion to the matrix that it will not bepeeled off easily.The RE modified steel has excellent oxidation resistance and thermal strength even if beingused continuously for a long period at high temperature.This steel roller has a service life of about 4 years com-parable to high Ni steel ones,so the low Ni steel can replace high Ni steel to make furnace roller.The Ni contentof this material can be reduced by 65% in comparison with Cr25Ni20Si2 steel,The low Ni steel has better pro-eessing properties including melting,casting and working properties than that of high Ni ones.  相似文献   

15.
The delayed fracture behavior of medium-carbon high strength spring steel containing different amounts of boron (0.000 5%, 0.001 6%) was studied using sustained load delayed fracture test. The results show that delayed fracture resistance of boron containing steels is higher than that of conventional steel 60Si2MnA at the same strength level and it increases with the increase of boron content from 0.000 5% to 0.001 6%. The delayed fracture mode is mainly intergranular in the boron containing steels tempered at 350 ℃, which indicates that the addition of boron does not change the fracture character. However, the increase of boron content enlarges the size of the crack initiation area. Further study of phase analysis indicates that most boron is in solid solution, and only a very small quantity of boron is in the M3(C, B) phase.  相似文献   

16.
The application of rare earths(RE) in the Ni saving heat resistant steel was studied by metalloscopy,scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),X-ray difference(XRD).Because the diffusion of chromium was promoted by RE,a dense and adhesive Cr2O3 layer could form rapidly at the early oxidation stage,which played a effective protection role;the pinning effect of silicon dioxide was enhanced by RE in the internal oxidation layer,which had a block effect on the diffusion of metal ions and oxygen ions at later stage of oxidation and resulted in that the high temperature oxidation rate of RE heat resistant steel was decreased.  相似文献   

17.
Effect of Cryogenic Treatment on Properties of Cr8-Type Cold Work Die Steel   总被引:2,自引:0,他引:2  
 Effect of cryogenic treatment on the properties of Cr8-type cold work die steel was investigated. The results show that cryogenic treatment increases hardness by decreasing retained austenite, but the degree depends on the austenitizing temperature. When quenching at lower austenitizing temperature, the steel can obtain higher toughness by cryogenic treatment substituting conventional treatment process. Cryogenic time has little effect on cryogenic treatment. Conversely, cryogenic temperature has a greatly effect on cryogenic treatment that the effect of cryogenic treatment is more obvious with decreasing cryogenic temperature. In addition, deep cryogenic treatment improves the wear resistance by precipitating more homogeneous MC and M6C-carbides.  相似文献   

18.
Stress relaxation method was carried out on a Ti micro-alloyed interstitial-free(IF)steel at the temperature ranging from 800 to 1 000℃.The results show that the softening kinetics curves of deformed austenite can be divided into three stages.At the first stage,the stress has a sharp drop due to the onset of recrystallization.At the second stage,aplateau appears on the relaxation curves indicating the start and finish of strain-induced precipitation.At the third stage,the stress curves begin to descend again because of coarsening of precipitates.Precipitation-timetemperature(PTT)diagram exhibited a"C"shape,and the nose point of the PTT diagram is located at 900 ℃ and the start precipitation time of 10 s.The theoretical calculation shows that the strain-induced precipitates were confirmed as almost pure TiC particles.The TiC precipitates were heterogeneously distributed in either a chain-like or cell-like manner observed by transmission electron microscopy(TEM),which indicates the precipitates nucleated on dislocations or dislocation substructures.In addition,a thermodynamic analytical model was presented to describe the precipitation in Ti micro-alloyed IF steel,which shows a good agreement between the experimental observation and the predictions of the model.  相似文献   

19.
Effect of Niobium on Microstructure of Cast AISI H13 Hot Work Tool Steel   总被引:3,自引:0,他引:3  
The effect of niobium addition on the microstructure of cast AISI H13 hot work tool steel was evaluated by using EDX analyzer attached to the scanning electron microscope. The volume percent of eutectic area and eutectic cell size and also volume percent of different carbides of new steel, which is heat treated under different conditions, are also determined. The results show that the a niobium addition modifies the cast structure of Nb-alloyed hot work tool steel, and reduces the size and volume of eutectic cells, and increases the maximum hardness of the steel.  相似文献   

20.
Based on the chemical composition of traditional hot-stamped steel(e.g.,22MnB5 and 30MnB5),Nb and V microalloying elements are added into 30MnB5 steel to meet the requirements of ultra-high strength,excellent ductility and potent resistance to hydrogen embrittlement(HE)at the same time.The influence of hot-stamped steel on HE was studied by conducting a hydrogen permeation method and pre-charged hydrogen slow strain rate test.Meanwhile,the experimental steel microstructures and corresponding fracture surfaces are observed and analyzed to characterize HE behavior.The results show that a finer microstructure,a lower apparent diffusion coefficient of hydrogen and a smaller percentage of strength and plasticity reduction are obtained due to the addition of the vanadium element into hot-stamped steel.Compared to the V free experimental steel,the steel with 0.14 wt.% V has a large number of dispersive precipitates and more grain boundary areas,which makes hydrogen atoms dispersedly distribute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号