首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
采用还原性有机酸络合铁离子并负载到活性炭纤维(ACFs)上,制备出非均相Fenton催化剂用于去除染料废水中有机污染物.采用SEM、FTIR和ICP-AES对制备出的草酸铁(Oxa-Fe)络合物负载ACFs(Oxa-Fe/ACFs-3)进行了表征.发现草酸铁络合物均匀负载在ACFs上,其中铁的质量分数为0.96%.在Oxa-Fe/ACFs-3和H2O2添加量分别为10 g/L和100 mmol/L(以染料废水体积计),50℃条件下对20 mL染料废水进行了降解,染料废水化学需氧量(COD)去除率在100 min内可达62.2%.此外,考察了该催化剂pH适用范围以及重复使用性能.结果表明,Oxa-Fe/ACFs-3促进了H2O2活化产生活性自由基?OH和?O2–,实现了对染料废水中有机污染物的降解.对比了不同还原性有机酸络合铁负载ACFs处理染料废水的性能,发现有机酸还原性越强,越有利于染料废水COD去除率的提高.  相似文献   

2.
主要研究了白腐菌对高毒性的有机污染物黑索今的降解效果。研究表明,黑索今模拟废水和实际废水生化降解后,黑索今的去除率分别达到75.1%和59.04%;在最佳实验条件:搅拌时间60min、2.5mL H2O2、1.0g活性炭下进行催化氧化处理后,COD的去除率分别为80.9%和85.1%,出水可以达到一级排放标准。  相似文献   

3.
溶解氧对催化铁内电解法预处理混合废水的影响   总被引:1,自引:0,他引:1  
采用内循环、微曝气和强曝气催化铁内电解法处理难降解混合废水,中试结果表明,在缺氧(DO〈0.4mg/L)和微氧(DO-1,2mg/L)条件下,混合废水经催化铁预处理后其BODJCOD值从0.13和0.12分别提高到0.32和0.28,平均TP去除率分别达到29.3%和36.1%,而且出水铁离子浓度在15-30mg/L范围内,可有效提高后续活性污泥浓度,改善污泥稳定性、以及混合液分离效果。在好氧(DO〉4.5mg/L)条件下,催化铁内电解法对混合废水可起到强化混凝作用,其对COD和TP的平均去除率高达37.5%和65.9%,但铁铜滤料消耗大,强度变差,而且出水铁离子浓度达100mg/L之多,对生物处理工艺产生不利影响。  相似文献   

4.
邵红  张扬  孙伶 《辽宁化工》2005,34(9):391-394
以钠基膨润土为原料,制备了铁硅交联土、铁硅有机复合土,以CODCr的去除率为指标,对原土、铁硅交联土、铁硅有机复合土进行了筛选,结果表明:铁硅有机复合土对CODCr的去除率明显好于铁硅交联土和原土;将铁硅有机复合土应用于造纸废水,探讨了其用量、废水PH值、搅拌时间等对CODCr去除率的影响,通过正交实验确定了最佳条件,并在此条件下考察了其对废水CODCr、色度、浊度的去除率,结果表明:以上指标分别可达到87.69%、98.00%、98.18%;最后对铁硅改性膨润土对废水有机污染物的吸附机理进行了探讨。  相似文献   

5.
胡俊生  任雪冬  张喆  刘军 《辽宁化工》2010,39(2):169-172
依据臭氧高级氧化的机理,在实验室反应器中通过实验考察在臭氧氧化处理酸性嫩黄染料废水过程中,控制不同的O3投加量、废水的初始pH值、H2O2与O3摩尔比对酸性嫩黄染料废水的色度和COD去除率的影响。结果显示:O3高级氧化能够有效降解酸性嫩黄染料废水,体系中投加H2O2可以提高降解速率,缩短处理时间,降低O3耗量。在pH=7的条件下,单一臭氧氧化30min时,废水的色度和COD去除率分别为100%和57.1%;而提高废水的pH值有助于提高COD去除率。O3/H2O2氧化工艺,适宜的H2O2与O3摩尔比为0.6,氧化处理30min废水的COD去除率可达73.3%。  相似文献   

6.
研究了有机磷农药中间体乙基氟化物生产废水的预处理,讨论了各种因素对处理效果的影响。实验结果表明:乙基氯化物生产废水采用酸化水解、微电解、中和预处理工艺是可行的,处理后废水的可生物降解性明显提高,为进入生化装置创造了条件。处理成本低,水中特征污染物去除率较高。废水的COD、硫化物、总磷的去除率分别为90.2%、99.4%、95.0%(其中有机磷的去除率为99%)。  相似文献   

7.
电生成强氧化剂处理染料废水试验研究   总被引:3,自引:0,他引:3  
本文研究了用电化学方法生成的强氧化剂H2O2和HClO处理酸性铬兰K染料废水。在电解过程中向阴极表面通纯氧,氧在阴极上还原可生成H2O2,以NaCl作为电解质,Cl-在阳极上还原为Cl2,Cl2进一步转化为HClO,H2O2和HClO都是强氧化剂,都可氧化降解染料分子。电解废水30.0min,褪色率和CODcr去除率分别为90.5%和76.7%,电解废水50.0min,褪色率和CODcr去除率分别为100.0%和83.1%。  相似文献   

8.
《化工设计通讯》2017,(2):75-77
催化铁技术可以转化部分难降解有机物,提高废水可生化性,提高废水pH值;产生的亚铁离子可以混凝去除部分污染物,提高后续生物作用。对催化铁与混凝协同及生物法工艺处理工业废水进行研究,研究化工废水进水pH值、反应时间、曝气、回流比对催化铁处理化工废水的影响,以及混合废水比例、铁离子浓度、混凝pH值、PAM投加、搅拌强度、沉淀时间对混凝效果的影响。  相似文献   

9.
催化铁内电解法脱色降解酸性大红GR废水   总被引:7,自引:0,他引:7  
考察了进水pH、搅拌速率、铁铜比、支持电解质浓度、温度等因素对催化铁内电解法处理酸性大红GR废水脱色降解效果的影响。在最优反应条件下,酸性大红GR废水色度的去除率大于95%,CODCr的去除率为55%左右。催化铁内电解法对酸性大红GR废水的处理效率高,且有较宽的pH适应范围。  相似文献   

10.
为优化反应条件,在2L压力反应器内,对吡虫啉农药废水进行湿式过氧化氢氧化(WPO)和催化湿式过氧化氢氧化(CWPO)降解处理,考察了过氧化氢加入量、反应温度、进水pH值和催化剂等对反应过程与污染物降解的影响规律。结果表明,WPO和CWPO能在温和的条件下降解难于生物降解的吡虫啉农药废水。温度为110℃,压力为0.6Mpa,过氧化氢用量为理论用量。进水pH值为3.5的条件下,WPO处理吡虫啉农药废水。COD去除率为47.7%:采用非均相Cu-Ni-Ce/SiO2催化剂,pH值为7.0。其他条件相同时,CWPO对相同吡虫啉农药废水的COD去除率可达89.1%。  相似文献   

11.
《分离科学与技术》2012,47(2):272-282
A comparative study of electrocoagulation and electrooxidation processes for the degradation of ellagic acid from aqueous solution was carried out. For the electrocoagulation process, metallic iron was used as electrodes whereas graphite and RuO2/IrO2/TaO2 coated titanium electrodes were used for the electrooxidation processes. The effect of the process variables such as initial pH, concentration of the supporting electrolyte, applied current density, electrolysis time, and anode materials on COD removal were systematically examined and discussed. Maximum COD removal of 93% was obtained at optimum conditions by electrocoagultion using an iron electrode. The ellagic acid was degraded completely by electrooxidation using graphite electrodes under the optimum conditions. During electrooxidation, the chloride ion concentration was estimated and the effect of the Cl? ion was discussed. The finding of this study shows that an increase in the applied current density, NaCl concentration, and electrolysis time enhanced the COD removal efficiency. The UV–Vis spectra analysis confirms the degradation of ellagic acid from aqueous solution.  相似文献   

12.
从糖精废水中提取金属铜及废水综合利用   总被引:1,自引:0,他引:1  
利用废铁卷与含铜酸性废水作用制备金属铜和聚合硫酸铁,并用聚合硫酸铁作絮凝剂处理酯化废水. 实验结果表明,1 t含铜酸性废水可制得8.5 kg铜粉及230 kg Fe3+浓度为158~160 g/L的聚合硫酸铁,处理后酸性废水中的硫酸含量降低了83.5%, Cu2+含量降低了85.0%. 在优化条件下,沉降30 min,酯化废水的COD及色度去除率分别达到了86.8%和88.5%.  相似文献   

13.
采用活化稻壳作为吸附剂纯化废液,再利用其去除石英砂中铁杂质。吸附剂的制备是在110℃下,质量分数1%的KOH溶液活化稻壳1 h,然后于600℃热处理2 h。研究了KOH的浓度、吸附剂的量、吸附时间、吸附液初始浓度和温度参数对去除废液中铁和铝的影响。结果表明,在最优试验条件下,铁和铝的去除率分别为97.2%和94.2%。研究发现纯化的废液对石英砂中铁的去除率远高于未纯化废液;在额外添加3.6%的磷酸时,纯化废液对铁的去除率达到77.1%,这项技术不仅可以节省大量的水(966 kg/m3)和磷酸(57.8 kg/m3)还可以避免环境污染。  相似文献   

14.
以铝合金为还原剂,采用离子陷阱进行了去除Na Cl溶液中Fe3+的研究。研究了Na Cl溶液流速、温度、初始Fe3+浓度和Na Cl质量分数等操作条件对Fe3+去除效果的影响规律。结果表明,随着流速减小、温度升高、初始Fe3+浓度增大和Na Cl质量分数增大,Fe3+的脱除率升高。在质量分数为3.5%的Na Cl溶液流量为10L/h,温度为60℃,初始Fe3+浓度为10mg/L时,Na Cl溶液中Fe3+的去除率可达95%以上。  相似文献   

15.
《分离科学与技术》2012,47(7):1632-1641
Abstract

New, efficient, and a cheap method for the removal of ferrous ion from aqueous in a fluidized bed reactor was developed. Different from the adsorption process in the treatment of iron species, the immobilization of iron oxide on support media in a fluidized bed never reaches saturation. Furthermore, the immobilized iron oxide is reusable in catalysis and adsorption. Silica sand (Si) and iron oxide (SiG) were employed as support media to remove Fe(II) from aqueous in a fluidized bed reactor. The oxidation rate of Fe(II) and the immobilization rate of iron oxide are strongly depend on pH value so the variation of solution pH is considered to be the major parameter. Furthermore, the aeration effect on iron removal efficiency is investigated. 97% of total iron was removed at pH 8 in the presence of SiG and 87% of total iron was removed at pH 6 in the presence of Si. When the initial pH was adjusted to 6 and was not adjusted during the reactions, the optimum total iron removal efficiency (97%) was found. The air aeration was provided to keep the dissolved oxygen in constant. Aeration air accelerates the oxidation of ferrous ion, but does not improve the total iron removal efficiency.  相似文献   

16.
研究了钼酸铁作为类Fenton试剂对邻苯二甲酸的催化氧化性能。考察了催化剂用量、H2O2浓度和反应温度对邻苯二甲酸去除率的影响。结果表明,当催化剂用量为1000 mg/L,H2O2浓度为4.995 mg/L,反应温度40℃时,反应90 min后,邻苯二甲酸的去除率可达92.36%。  相似文献   

17.
采用新型还原剂去除硫酸法钛白粉生产工艺中一洗后偏钛酸中的3价铁,考察了新型还原剂的添加量、料浆含量、温度等对去除铁的影响及对钛白粉颜色的影响。小试结果表明,当新型还原剂用量为TiO2质量的0.4%,料浆TiO2的质量浓度为300 g/L、温度为50℃时,铁的去除率最佳,达到99.52%;煅烧后颜色的考察,新型还原剂法与传统硫酸漂白还原所得的钛白粉的颜色相近。生产实践应用证明,产品亨特白度、蓝光白度、亮度等指标达到传统法的质量水平,效果良好;生产成本较传统法降低81.8元/t。  相似文献   

18.
Treatment of wastewater containing lead and iron was examined using two different ion‐exchange resins namely Duolite ES 467 (containing amino‐phosphonic functional groups) and a chelating ion‐exchange resin (containing hydroxamic acid functional groups). Initially different sorption parameters such as contact time, pH, concentrations of sorbent, sorbate and chloride ion were studied. The sorption kinetics was observed to be fast and equilibrium could be reached within 30 min. Lead sorption efficiency increased with increase in pH whereas the opposite trend was observed with iron. The presence of chloride ions greatly reduced the Pb sorption efficiency in the case of Duolite ES 467. Column studies were carried out to recover Pb and Fe individually using Duolite ES 467 resin. The maximum uptake of Pb at pH 2 and 3 was observed to be 11.63 and 33.96 g dm?3 of resin respectively. Similarly, for Fe at pH 2 and 3 the uptake was observed to be 10.07 and 6.96 g dm?3 of resin respectively. In the presence of chloride ions, column studies were carried out using Duolite ES 467 for iron and chelating ion‐exchange resin containing hydroxamic acid functional groups for lead sorption. Hydroxamic acid resin's loading capacity remains constant for at least up to 20 cycles. Copyright © 2005 Society of Chemical Industry  相似文献   

19.
采用探头超声和震板超声两种强化工艺萃取分离高炉瓦斯泥硫酸浸出模拟液中的铟和铁离子,通过与传统溶剂萃取工艺比较,得出超声强化可在保证较高铟萃取率和反萃率的同时,明显缩短萃取和反萃时间,提高萃取效率. 其中,震板超声较适合铟离子的萃取过程,探头超声较适合铟离子的反萃过程. 采用两种超声强化工艺萃取分离瓦斯泥硫酸浸出模拟液中铟、铁离子的适宜工艺条件为:硫酸浓度1 mol/L,震板超声萃取1 min,铟萃取率达96.5%,铁萃取率为8.5%;盐酸浓度2 mol/L,探头搅拌反萃2.5 min,铟反萃率达71%,铁反萃率为3.8%.  相似文献   

20.
采用铁屑微电解法对染料废水进行了处理,研究了反应机理,探讨了废水的pH值、反应时间以及铁炭质量比等因素对处理效果的影响。结果表明:在pH值为3、铁碳比为4:1及反应时间100min时,经动态法处理的染料废水,COD_(Cr)去除率可达89%,脱色率达98.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号