首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
HRT和曝气量对AAO-BAF系统反硝化除磷性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
以COD/TN为4左右的生活污水为处理对象,通过调节系统进水流量和曝气生物滤池(BAF)曝气量,研究了水力停留时间(HRT)和BAF气水比对AAO-BAF反硝化除磷系统运行性能的影响。结果表明,气水比和水力负荷(HLR)对BAF的硝化性能有显著影响,BAF气水比为3:1时,NH4+去除率降低到了72%;当AAO的HRT为4 h,BAF的HLR为3 m3·m-2·h-1时,即使BAF的气水比达到8:1,也不能保证NH4+的完全去除。试验得出,AAO-BAF反硝化除磷系统的PO43-去除率与NH4+去除率存在良好的相关关系,为保证90%以上的磷去除率,NH4+去除率应该达到98%。当AAO的HRT≥6 h,BAF气水比≥4:1时,AAO-BAF系统对COD、NH4+、TN和PO43-的去除率分别可达87%、99%、80%和95%。  相似文献   

2.
李菊 《净水技术》2010,29(4):32-35
在水力停留时间(hydraulic retention time,HRT)为1 h和2 h、气水比为5:1、回流比为100%的条件下,考察了前置反硝化曝气生物滤池工艺对低浓度生活污水的处理效果,并研究了反冲洗对该工艺去除效果的影响。试验结果表明:当HRT为2 h时,前置反硝化曝气生物滤池对低浓度生活污水中COD、NH_4~+-N和TN的平均去除率分别为70%、91%和53%,当HRT降至1 h时,COD、NH_4~+-N和TN平均去除率分别降低12%、34%和20%。在反冲洗后2~3 h,该工艺能恢复到正常处理水平。  相似文献   

3.
试验采用二级曝气生物滤池(BAF)工艺处理广西省南宁市的木薯加工废水,通过分析反应系统对COD、总氮(TN)的去除率,优化水力停留时间(HRT)、气水比,从而考察二级BAF对高COD木薯加工废水的处理效果.试验结果表明:采用二级BAF工艺处理高COD木薯加工废水可行.当HRT=8h,气水比为10∶1时,处理效果最佳,二级BAF的出水平均COD、TN分别为114.56、2.71 mg/L,平均去除率分别为92.40%、94.01%.  相似文献   

4.
利用剩余污泥水解酸化液作为外加碳源研究中部曝气和底部曝气曝气生物滤池(BAF)处理低碳氮比生活污水时的生物脱氮性能。结果表明,碳源与污水投配的流量比以及是否回流对BAF生物脱氮效果影响明显,气水流量比和回流流量比对BAF生物脱氮效果有一定影响;进水NH4+-N、TN质量浓度和COD分别为43.11、45.07、29.2mg.L-1时,中部曝气BAF的NH4+-N和TN去除率分别为99.04%和78.32%,出水COD为32.4 mg.L-1;底部曝气BAF的NH4+-N和TN去除率分别为98.61%和68.99%,出水COD为28.4 mg.L-1。研究表明,BAF在2种运行方式下可获得良好的硝化与反硝化性能,且不会引起二次污染。  相似文献   

5.
碳氮比对AAO-BAF工艺运行性能的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
AAO-BAF工艺由厌氧-缺氧-好氧反应器和曝气生物滤池组成,属于外硝化反硝化除磷工艺。以实际生活污水为处理对象,通过调节进水COD浓度(从211 mg·L-1增加到675 mg·L-1),研究了进水COD和TN的比(C/N)对AAO-BAF工艺运行性能的影响。结果表明,进水有机物浓度低或高,可以通过限制厌氧释磷量或竞争AAO反应器缺氧区的NO3-,从而影响工艺的反硝化除磷效果。当进水C/N大于4,小于7时,AAO-BAF工艺对COD、TN和PO43-的去除率分别可达86%、78%和90%以上。很高的C/N(如9.5)会使缺氧区内存在大量挥发性脂肪酸(VFA),导致普通反硝化菌迅速消耗反硝化聚磷菌(DPAOs)的电子受体NO3-。  相似文献   

6.
应用前置反硝化BAF工艺对生活污水进行试验研究,结果表明水力负荷对该工艺处理效果影响显著。在A段与O段体积比1:2、气水比3:1、回流比200%的条件下。最佳水力负荷为2.80m^3/(m^2·h),此时COD去除率在90%左右,NH4^+-N去除率大于85%,总脱氮率大于70%:出水COD小于30mg/L,NH4^+-N小于5mg/L,TN小于15mg/L:同时发现回流比对系统TN去除效果影响较大。  相似文献   

7.
针对生物絮凝吸附工艺处理生活污水的局限性,实验采用后置与前置反硝化曝气生物滤池分别对生物絮凝吸附出水进行深度脱氮研究。实验结果表明,后置反硝化工艺对COD、NH_4~+-N、TN的去除率分别为66.08%、95.39%、16.43%。前置反硝化工艺阶段,实验得出最佳工况:回流比为150%,气水比为4:1,水力负荷为3.01 m/h时,对COD、NH_4~+-N、TN的去除率分别为77.91%、94.69%、64.52%。对比发现改造后前置反硝化工艺较后置反硝化工艺对COD的去除率提高了11%,TN的去除率提高了48%,脱氮性能更加显著。  相似文献   

8.
为解决传统的脱氮除磷技术存在的碳源不足、菌群竞争、污泥龄难以控制等诸多问题,提出了CDPR-BAF污水生物处理工艺.通过设置BAF作为硝化段,系统不必外投硝酸盐即可为反硝化除磷提供充足的电子受体.试验结果 表明,该工艺对COD、NH4+-N、TN和TP的去除率分别达90.5%、89%、81%和92.3%,同时处理效果稳定.缺氧段的N/P是工艺反硝化除磷的关键,系统运行稳定时反硝化聚磷菌所占比例达75.3%.  相似文献   

9.
邹海明  谢越  王艳  李飞跃 《化学工程》2012,40(4):6-9,22
采用双系统改性沸石曝气生物滤池(BAF)反应器对玉米青贮渗出液进行除碳脱氮处理,研究了对COD、氨氮、总氮(TN)的去除效果及其影响因素气水比(流量比)、水力停留时间、有机负荷和回流比。结果表明:挂膜成熟后,沸石生物膜反应器对COD和氨氮有较好的去除效果;挂膜23 d后,COD的去除率可以稳定在70%,氨氮去除率可以稳定在80%以上;当气水比为2∶1,水力停留时间为12 h,生物膜活性达到最高,COD去除率达到83.4%;有机负荷对氨氮去除效果影响较大,有机物质量浓度从160 mg/L提高到280 mg/L时,NH4+-N的去除率由88.6%降为32.7%;回流比对COD、氨氮去除率影响不大,但对TN的去除影响显著,回流比从50%提高到300%,TN去除率从42.3%上升到81.3%。双系统改性沸石BAF反应器明显地改善了玉米青贮渗出液的出水水质。  相似文献   

10.
针对农村生活废水分散、低C/N的特性,提出研究了一种联合处理技术即联合曝气生物滤池(BAF)和好氧-缺氧后置反硝化序批式序批式活性污泥反应器(SBR)。结果表明,BAF挂膜完成后COD、NH4+-N和TN去除率可高达67.5%、72.5%和51.9%。当BAF和SBR联合后,COD、NH_4~+-N和TN去除率显著高于BAF或者SBR单独处理。COD的去除主要集中在SBR阶段用于反硝化脱氮,TN去除主要依赖BAF阶段特殊的生物分布。内聚物聚羟基烷酸酯(PHA)的最大合成质量摩尔浓度为5.9 mol/g并且在缺氧阶段迅速减少至4.2 mol/g;糖原质的最低质量摩尔浓度为4.8 mol/g,在随后的时间内逐渐升高至5.3 mol/g。  相似文献   

11.
可回流式生物膜组合反应器脱氮的影响因素   总被引:1,自引:0,他引:1  
利用生物膜组合反应器处理实际生活污水,探讨了水力停留时间(HRT)、溶解氧(DO)和回流比(R)对系统脱氮性能的影响. 结果表明,在无回流时,HRT和DO仅对氨氮(NH4+-N)去除影响较大,而对总氮(TN)去除影响不大,硝化液回流后,系统TN去除率明显提高. 在水温为19~28℃、进水COD浓度为208~496 mg/L及NH4+-N浓度为29.5~89.5 mg/L的条件下,当HRT为3 h,O和B段DO分别为3~4和6~7 mg/L、系统回流比为150%时,该生物膜组合反应器对NH4+-N和TN的去除效果达到最佳,其平均去除率分别为98.97%和76.27%,此时系统出水NH4+-N和TN分别为0.43和11.2 mg/L,达到GB18918-2002规定的一级A标准.  相似文献   

12.
同步除碳脱氮BAF快速启动中试研究   总被引:1,自引:1,他引:0  
为缓解同步除碳脱氮曝气生物滤池(BAF)启动过程中异养菌对硝化菌的抑制作用,提高硝化菌的竞争优势,提出了BAF低强度反冲洗与高浓度硝化污泥接种相结合的启动方法.试验结果表明,通过第一阶段闷曝接种和第二阶段小流量连续进水后,COD去除率达到80%以上,平均出水COD低于50mg·L-1,满足污水排放一级A要求;而NH4+-N去除率仅为20%左右.通过第三阶段的低强度反冲洗与高浓度硝化污泥接种,经过5个周期后,NH4+-N去除率提高至85%以上,出水NH4+N质量浓度低至5mg·L-1以下,满足污水排放一级A标准.该方法能使BAF的启动周期缩短为30d左右,并能够保证其长期稳定运行,平均出水COD和NH4+-N质量浓度分别为35.4mg·L-1和3.48mg·L-1,均能满足污水排放一级A要求.  相似文献   

13.
在相同的水力负荷下以水平潜流人工湿地(SFCW)作为对照,进行了波形潜流人工湿地(W-SFCW)在不同的HRT下处理模拟生活污水试验。结果表明,W-SFCW对污染物尤其是氮、磷的去除效果明显优于SFCW。HRT为1 d时对TN和NH4+-N的去除效果最好,HRT为2 d时对TP的去除效果最好,HRT为2 d时COD的去除效果较好。在此条件下,W-SFCW对COD、TN、NH4+-N和TP的去除率分别比SFCW提高了10%、17.2%、11.6%和27.4%。  相似文献   

14.
以西安市第四污水处理厂初沉池实际出水为研究对象,研究了SBR试验装置中HRT对有机物、氮、磷的去除效果。结果表明,HRT对COD、PO43--P的去除效果影响较小,对TN和NH4+-N的去除影响较大。TN和NH4+-N的去除率随好氧停留时间、缺氧停留时间的增加而增大。试验装置在缺氧段、好氧段停留时间分别为5 h、3.5 h的运行条件下,对COD、NH4+-N和TN的平均去除率分别达到了86%、98%和74%,出水水质除TP之外,均达到了城镇污水处理厂污染物排放标准(GB 18918-2002)一级A排放标准要求,试验结果为SBR工艺污水厂升级改造提供了工艺运行参数,也可供同类型污水处理厂工艺升级改造设计时参考。  相似文献   

15.
利用移动床生物膜反应器(MBBR)工艺处理干清粪工艺的奶牛场废水。试验结果表明,进水NH4+-N含量、气水比、水力停留时间(HRT)以及是否回流对MBBR的处理效果影响明显,回流比对MBBR的脱氮效果有一定的影响。当进水NH4+-N、TN的质量浓度和COD分别为134.4、156.7 mg/L和460.7 mg/L时,在HRT和气水体积比、回流体积比分别为18 h和30:1、2:1的条件下,NH4+-N、TN和COD的去除率分别为98.04%、62.38%和75.18%。MBBR工艺可以有效地处理干清粪条件下的奶牛场废水,适应性强且效果稳定可靠。  相似文献   

16.
针对某电镀污水处理厂物化出水,采用活性污泥法+后置反硝化曝气生物滤池(BAF)工艺进行脱氮深度处理中试研究,结果表明,活性污泥法单元COD和NH3-N平均去除率分别达49.37%和69.30%。反硝化BAF单元NO_3~--N和TN平均去除率分别达90.47%和60.42%,出水NO_3~--N的质量浓度基本在10 mg/L以内;停留时间对反硝化BAF脱氮效果影响不大,43 min出水时NO_3~--N容积负荷可达1.5 kg/(m3·d);去除单位氮(N)的碳源消耗量和碱度增加量与理论值相近,反硝化BAF运行成本(碳源部分)为0.41元/t,折合去除每10 mg/L的N运行成本较低,为0.08元/t左右。  相似文献   

17.
牡蛎壳填料曝气生物滤池对城市生活污水的处理   总被引:1,自引:0,他引:1  
利用原牡蛎壳、破碎牡蛎壳、塑料球分别为填料的曝气生物滤池(BAF)对城市生活污水进行处理,考察牡蛎壳作为BAF填料的可行性。结果表明,在COD和NH3-N去除方面,牡蛎壳填料要优于塑料球填料,原牡蛎壳、破碎牡蛎壳、塑料球填料BAF对COD的平均去除率分别为78.1%、77.8%、74.5%;当HRT大于4 h时,3种填料BAF对NH3-N的去除率分别为97.7%、97.3%和93%;HRT为2h时,对NH3-N去除率分别为55.5%、89.8%、35.1%;3种填料BAF对TP的去除主要通过磷作为微生物繁殖生长的营养成分而被去除;当HRT大于4h,由于牡蛎壳可中和NH3-N硝化过程产生的H+,2种牡蛎壳填料BAF出水的pH均高于塑料球填料BAF出水的pH,这也是牡蛎壳填料BAF对NH3-N具有较高去除率的原因。牡蛎壳可以作为BAF的填料,且在COD、NH3-N的去除率以及出水pH方面优于塑料球填料。  相似文献   

18.
胡青  夏四清  陈清  白新征 《水处理技术》2013,39(7):100-103,107
考察了两种回流方式下倒置A2O-膜生物反应器(MBR)去除污染物的效果。试验结果表明,采用工艺2的回流方式,COD、NH3-N、TN及TP去除率分别达到84.7%、99.2%、62.2%及73.3%,平均出水COD、NH3-N、TN及TP质量浓度分别为42.5、0.25、14.4、0.56 mg/L,基本满足国家一级A排放标准,脱氮除磷效果优于工艺1(TN、TP去除率分别为52.5%、49.5%),而COD和NH3-N的去除率基本不受回流方式影响;膜组件高效截留作用使出水浊度维持在1.0 NTU以下;系统存在同步硝化反硝化、反硝化除磷作用,有利于强化系统脱氮除磷的性能。  相似文献   

19.
采用自主设计的悬浮载体生物膜/颗粒污泥耦合装置,利用硝化菌载体生物膜和反硝化聚磷菌颗粒污泥,研究水力停留时间对生物膜/颗粒污泥耦合工艺脱氮除磷的影响,得出最佳工艺参数。试验考查水力停留时间分别为6 h、7 h、8.5 h和10.5 h,结果表明,当水力停留时间为8.5 h时,系统的COD去除率为91.26%,氨氮和总氮的去除率分别为80.68%和70.58%,厌氧释磷速率也较稳定,为0.47 mg P·(g SS)-1·h-1,厌氧释磷速率最高,其碳源利用率最大,反硝化除磷效率最稳定,PO43--P去除率为76.50%,反硝化除磷效率为1.04 mg P·(mg NO-3-N)-1,所以当水力停留时间为8.5 h时,系统具有较高的脱氮除磷效率。当水力停留时间过短时,氮磷的去除不完全,过长时,系统不稳定,系统的最优水力停留时间为8.5 h。  相似文献   

20.
针对合流制雨污水的处理问题,提出了采用曝气生物滤池(BAF)处理雨污合流污水的工艺,为了得到该工艺的运行技术参数,试验研究了温度.填料层高度、水力停留时间(HRT)对曝气生物滤池去除雨污水中COD和NH4+-能力及其运行的影响规律.结果表明,温度在15~26℃之间变化时,COD、NH4+-N的去除率分别为85%~91%、58%~79%,且反应最适温度为24℃;BAF的去污能力随填料高度而增加,其中降解COD、NH4+-N的最佳高度分别为0~60 cm、30~90 cm填料层段;当水力停留时间为1.0 h时,COD、NH4+-N的去除率分别可达91%、67.69%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号