首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The reaction of the Cu(II) bis N,O‐chelate‐complexes of L‐2,4‐diaminobutyric acid, L‐ornithine and L‐lysine {Cu[H2N–CH(COO)(CH2)nNH3]2}2+(Cl)2 (n = 2–4) with terephthaloyl dichloride or isophthaloyl dichloride gives the polymeric complexes {‐OC–C6H4–CO–NH–(CH2)n–CH(nh2)(COO)Cu(OOC)(NH2)CH–CH2)n–NH‐}x 1 – 5 . From these the metal can be removed by precipitation of Cu(II) with H2S. The liberated ω,ω′‐N,N′‐diterephthaloyl (or iso‐phthaloyl)‐diaminoacids 6 – 10 react with [Ru(cymene)Cl2]2, [Ru(C6Me6)Cl2]2, [Cp*RhCl2]2 or [Cp*IrCl2]2 to the ligand bridged bis‐amino acidate complexes [Ln(Cl)M–(OOC)(NH2)CH–(CH2)nNH–CO]2–C6H4 11 – 14 .  相似文献   

2.
Refluxing a mixture of phthalonitrile C6R1R2R3R4(CN)2 1 (R1–R4=H), or its substituted derivatives 2 (R1, R3, R4=H, R2=Me), or 3 (R1, R4=H, R2, R3=Cl) (1 equiv.) and N,N‐diethylhydroxylamine, Et2NOH, (4 equivs.) in methanol for 4 h results ( Route A ) in precipitation of the symmetrical ( 6 and 8 ) and an isomeric mixture of unsymmetrical ( 7 ) phthalocyanines, isolated in good (55–65 %) yields. The reaction of phthalonitriles 1 , 2 , or 4 (R1, R3, R4=H, R2=NO2) (4 equivs.) with Et2NOH (8 equivs.) in the presence of a metal salt MCl2 (M=Zn, Cd, Co, Ni) (1 equiv.) in n‐BuOH or without solvent results in the formation of metallated phthalocyanine species ( 9 – 17 ). Upon refluxing in freshly distilled dry chloroform, phthalonitrile 1 or its substituted analogues 2 , 3 or 5 (R1–R4=F) (1 equiv.) react with N,N‐diethylhydroxylamine (2 equivs.) affording 3‐iminoisoindolin‐1‐ones 18 – 21 ( Route B ) isolated in good yields (55–80 %). All the prepared compounds were characterized with C, H, and N elemental analyses, ESI‐MS, IR, and compounds 18 – 21 also by 1D (1H, 13C{1H}), and 2D (1H,15N‐HMBC and 1H,13C‐HMQC, 1H,13C‐HMBC) NMR spectroscopy.  相似文献   

3.
1,4‐Dimethyl‐5‐aminotetrazolium 5‐nitrotetrazolate ( 2 ) was synthesized in high yield from 1,4‐dimethyl‐5‐aminotetrazolium iodide ( 1 ) and silver 5‐nitrotetrazolate. Both new compounds ( 1, 2 ) were characterized using vibrational (IR and Raman) and multinuclear NMR spectroscopy (1H, 13C, 14N, 15N), elemental analysis and single crystal X‐ray diffraction. 1,4‐Dimethyl‐5‐aminotetrazolium 5‐nitrotetrazolate ( 2 ) represents the first example of an energetic material which contains both a tetrazole based cation and anion. Compound 2 is hydrolytically stable with a high melting point of 190 °C (decomposition). The impact sensitivity of compound 2 is very low (30 J), it is not sensitive towards friction (>360 N). The molecular structure of 1,4‐dimethyl‐5‐aminotetrazolium iodide ( 1 ) in the crystalline state was determined by X‐ray crystallography: orthorhombic, Fddd, a=1.3718(1) nm, b=1.4486(1) nm, c=1.6281(1) nm, V=3.2354(5) nm3, Z=16, ρ=1.979 g cm−1, R1=0.0169 (F>4σ(F)), wR2 (all data)=0.0352.  相似文献   

4.
Chromium complexes with N,N,N‐tridentate ligands, LCrCl3 (L = 2,6‐bis{(4S)‐(?)‐isopropyl‐2‐oxazolin‐2‐yl}pyridine ( 1 ), 2,2′:6′,2″‐terpyridine ( 2 ), and 4,4′,4″‐tri‐tert‐butyl‐2,2′:6′,2″‐terpyridine ( 3 )), were prepared. The structures of 1 and 2 were determined by X‐ray crystallography. Upon activation with modified methylaluminoxane (MMAO), 1 catalyzed the polymerization of 1,3‐butadiene, while 2 and 3 was inactive. The obtained poly(1,3‐butadiene) obtained with 1 ‐MMAO was found to have completely trans‐1,4 structure. The 1 ‐MMAO system also showed catalytic activity for the polymerization of isoprene to give polyisoprene with trans‐1,4 (68%) and cis‐1,4 (32%) structure. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
6‐Bromo‐2‐iminopyridine cobalt(II) complexes bearing different imine‐carbon substituents ( Co1 – Co7 ) were synthesized and subsequently employed for 1,3‐butadiene polymerization. All the complexes were identified using Fourier transform infrared spectra and elemental analysis, and complexes Co1 and Co3 were further characterized using single‐crystal X‐ray diffraction analysis, demonstrating they adopted distorted trigonal bipyramidal and tetrahedral geometries, respectively. Activated by methylaluminoxane, these complexes exhibited high cis‐1,4 selectivity, and the activity was highly dependent on the substituent at the imine‐carbon position of the ligand. Addition of PPh3 to the polymerization systems could enhance the catalytic activity and simultaneously switched the selectivity from cis‐1,4 to cis‐1,2 manner. On the basis of the obtained results, a plausible mechanism involving the regulation of selectivity and activity is proposed. © 2019 Society of Chemical Industry  相似文献   

6.
Half‐sandwich rhodium(III) polypyridyl (pp) complexes with the metal atom capped by the facial crown thiaether 1,4,7‐trithiacyclononane [9]aneS3 represent a promising class of apoptosis‐inducing potent cytostatic agents. The necrotic damage caused by the complexes is negligible. In vitro cytotoxicity assays with the human cancer cell lines MCF‐7 and HT‐29 and immortalized HEK‐293 cells indicate that the dicationic κ2N(imino) complexes [([9]aneS3)RhCl(pp)]2+ are much more active than monocationic complexes [([9]aneS3)RhCl2(L)]+ (L=imidazole, CH3CN). Whereas the κ2N(amino) complex [([9]aneS3)RhCl(piperazine)]2+ is inactive, replacing piperazine with the structurally analogous κ2S (thiaether) ligand 1,4‐dithiane restores cytotoxicity as evidenced by IC50 values in the range 8.1‐11.6 μM . Spectroscopic (CD, UV/Vis, NOESY) and viscosity measurements indicate that the active dppz complex 8 (IC50 values: 4.7–8.9 μM ) exhibits strong intercalative binding towards DNA whereas the even more potent bipyrimidine complex 9 (IC50 values: 0.6–1.9 μM ) causes no alteration of the duplex B conformation. Weaker intercalative binding is observed for the dpq complex 7 . A comparative annexin V–propidium iodide binding assay with lymphoma (BJAB) cells and healthy leukocytes demonstrates that the cytotoxic activity of complex 8 and particularly complex 9 is highly selective towards the malignant cells.  相似文献   

7.
The presence of a bulky substituent at the 2‐position of 1,3‐butadiene derivatives is known to affect the polymerization behavior and microstructure of the resulting polymers. Free‐radical polymerization of 2‐triethoxysilyl‐1,3‐butadiene ( 1 ) was carried out under various conditions, and its polymerization behavior was compared with that of 2‐triethoxymethyl‐ and other silyl‐substituted butadienes. A sticky polymer of high 1,4‐structure ( ) was obtained in moderate yield by 2,2′‐azobisisobutyronitrile (AIBN)‐initiated polymerization. A smaller amount of Diels–Alder dimer was formed compared with the case of other silyl‐substituted butadienes. The rate of polymerization (Rp) was found to be Rp = k[AIBN]0.5[ 1 ]1.2, and the overall activation energy for polymerization was determined to be 117 kJ mol?1. The monomer reactivity ratios in copolymerization with styrene were r 1 = 2.65 and rst = 0.26. The glass transition temperature of the polymer of 1 was found to be ?78 °C. Free‐radical polymerization of 1 proceeded smoothly to give the corresponding 1,4‐polydiene. The 1,4‐E content of the polymer was less compared with that of poly(2‐triethoxymethyl‐1,3‐butadiene) and poly(2‐triisopropoxysilyl‐1,3‐butadiene) prepared under similar conditions. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
The third‐generation peptide‐dendrimer B1 (AcES)8(BEA)4(K‐Amb‐Y)2BCD‐NH2 (B=branching (S)‐2,3‐diaminopropanoic acid, K=branching lysine, Amb=4‐aminomethyl‐benzoic acid) is the first synthetic model for cobalamin‐binding proteins and binds cobalamin strongly (Ka=5.0×106 M ?1) and rapidly (k2=346 M ?1 s?1) by coordination of cobalt to the cysteine residue at the dendrimer core. A structure–activity relationship study is reported concerning the role of negative charges in binding. Substituting glutamates (E) for glutamines (Q) in the outer branches of B1 to form N3 (AcQS)8(BQA)4(B‐Amb‐Y)2BCD‐NH2 leads to stronger (Ka=12.0×106 M ?1) but slower (k2=67 M ?1 s?1) cobalamin binding. CD and FTIR spectra show that the dendrimers and their cobalamin complexes exist as random‐coil structures without aggregation in solution. The hydrodynamic radii of the dendrimers determined by diffusion NMR either remains constant or slightly decreases upon binding to cobalamin; this indicates the formation of compact, presumably hydrophobically collapsed complexes.  相似文献   

9.
Ruthenium complexes with the formulae Ru(CO)2(PR3)2(O2CPh)2 [ 6a – h ; R=n‐Bu, p‐MeO‐C6H4, p‐Me‐C6H4, Ph, p‐Cl‐C6H4, m‐Cl‐C6H4, p‐CF3‐C6H4, m,m′‐(CF3)2C6H3] were prepared by treatment of triruthenium dodecacarbonyl [Ru3(CO)12] with the respective phosphine and benzoic acid or by the conversion of Ru(CO)3(PR3)2 ( 8e – h ) with benzoic acid. During the preparation of 8 , ruthenium hydride complexes of type Ru(CO)(PR3)3(H)2 ( 9g , h ) could be isolated as side products. The molecular structures of the newly synthesized complexes in the solid state are discussed. Compounds 6a – h were found to be highly effective catalysts in the addition of carboxylic acids to propargylic alcohols to give valuable β‐oxo esters. The catalyst screening revealed a considerably influence of the phosphine′s electronic nature on the resulting activities. The best performances were obtained with complexes 6g and 6h , featuring electron‐withdrawing phosphine ligands. Additionally, catalyst 6g is very active in the conversion of sterically demanding substrates, leading to a broad substrate scope. The catalytic preparation of simple as well as challenging substrates succeeds with catalyst 6g in yields that often exceed those of established literature systems. Furthermore, the reactions can be carried out with catalyst loadings down to 0.1 mol% and reaction temperatures down to 50 °C.

  相似文献   


10.
Ring‐opening polymerization of ω‐pentadecalactone (PDL) by tetrahydroborate complexes of rare earth metals, Ln(BH4)3(THF)3 (Ln = La ( 1 ), Nd ( 2 ), Y ( 3 )), was studied. These complexes showed high activity for PDL polymerization in THF at 60°C. Among the complexes 1 – 3 , the neodymium complex 2 was most active. The obtained poly(PDL) was demonstrated to be hydroxy‐telechelic by 1H‐NMR and MALDI‐TOF MS spectroscopy. Biodegradation of the poly(PDL) in compost at 60°C was investigated, where 18% weight loss of the samples was observed after 280 days. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Ruthenium complexes are currently considered to be among the most promising alternatives to platinum anticancer drugs. In this work, thirteen structural analogues and organelle/receptor‐targeting peptide bioconjugates of a cytotoxic bis(dppz)‐RuII complex [Ru(dppz)2(CppH)](PF6)2 ( 1 ) were prepared, characterized, and assessed for their cytotoxicity and cellular localization (CppH=2‐(2′‐pyridyl)pyrimidine‐4‐carboxylic acid; dppz=dipyrido[3,2‐a:2′,3′‐c]phenazine). It was observed that structural modifications (lipophilicity, charge, and size‐based) result in the cytotoxic potency of 1 being compromised. Confocal microscopy studies revealed that unlike 1 , the screened complexes/bioconjugates do not have a preferential accumulation in mitochondria. The results of this important structure–activity relationship strongly support our initial hypothesis that accumulation in mitochondria is crucial for 1 to exert its cytotoxic action.  相似文献   

12.
3,4,5‐Triamino‐1,2,4‐triazolium 5‐nitrotetrazolate ( 2 ) was synthesized in high yield from 3,4,5‐triamino‐1,2,4‐triazole (guanazine) ( 1 ) and ammonium 5‐nitrotetrazolate. The new compound 2 was characterized by vibrational (IR and Raman) and multinuclear NMR spectroscopy (1H, 13C, 15N), elemental analysis and single crystal X‐ray diffraction (triclinic, P(‐1), a=0.7194(5), b=0.8215(5), c=0.8668(5) nm, α=75.307(5), β=70.054(5), γ=68.104(5)°, V=0.4421(5) nm3, Z=2, ϱ=1.722 g cm−1, R1=0.0519 [F>4σ(F)], wR2(all data)=0.1154). The 15N NMR spectrum and X‐ray crystal structure (triclinic, P‐1, a=0.5578(5), b=0.6166(5), c=0.7395(5) nm, α=114.485(5)°, β=90.810(5)°, γ=97.846(5)°, V=0.2286(3) nm3, Z=2, ϱ=1.658 g cm−1, R1=0.0460 [F>4σ(F)], wR2(all data)=0.1153) of 1 were also determined.  相似文献   

13.
The 1:1 cocrystallization of 1,4‐diaryl‐1,4‐bisimines (Ar–CHN–CH2‐)2 4 – 11 and substituted meso‐1,2‐diaryl‐1,2‐ethanediols 1 – 3 leads to supramolecular structures in which the diol is hydrogen bonded by one of its hydroxy groups to an imine nitrogen atom of a 1,4‐bisimine. The second functionality in each molecule leads to the generation of ladderlike polymeric structures where each molecule of the diol is linked to two molecules of the 1,4‐bisimine and vice versa. If the diol carries electron donor groups in the aromatic residue and the 1,4‐bisimine correspondingly acceptor groups, then charge transfer interactions are observed. The excited CT complex which corresponds to a radical ion pair is stabilized by migration of a proton of a hydroxy group to the nitrogen atom of an imino group. This is supported by the appearance of a N–H vibration in the IR spectra. The reorganization is also accompanied by changes in the UV/Vis spectra and by the generation of paramagnetism in the crystalline material. The results represent a type of photochromism which has its origin in a light‐induced cooperative electron–proton transfer. The photochromism is thermally reversible.  相似文献   

14.
A group of organotin(IV) complexes were prepared: [SnCy3(DMNI)] ( 1 ), [SnCy3(BZDO)] ( 2 ), [SnCy3(DMFU)] ( 3 ), and [SnPh2(BZDO)2] ( 4 ), for which DMNIH=2,6‐dimethoxynicotinic acid, BZDOH=1,4‐benzodioxane‐6‐carboxylic acid, and DMFUH=2,5‐dimethyl‐3‐furoic acid. The cytotoxic activities of compounds 1 – 4 were tested against pancreatic carcinoma (PANC‐1), erythroleukemia (K562), and two glioblastoma multiform (U87 and LN‐229) human cell lines; they show very high antiproliferative activity, with IC50 values in the 150–700 nM range after incubation for 72 h. Distribution of cellular DNA upon treatment with 1 – 4 revealed that whereas compounds 1 – 3 induce apoptosis in most of the cell lines, compound 4 does not affect cell viability in any cell line tested, indicating a possible difference in cytotoxic mechanism. Studies with the daunomycin‐resistant K562/R cell line expressing P‐glycoprotein (Pgp) showed that compounds 1 – 4 are not substrates of this protein efflux pump, indicating that these compounds do not induce acquisition of multidrug resistance, which is associated with the overexpression of Pgp.  相似文献   

15.
The attachment of anticancer agents to polymers is a promising approach towards reducing the toxic side‐effects and retaining the potent antitumour activity of these agents. A new tetrahydrophthalimido monomer containing 5‐fluorouracil (ETPFU) and its homopolymer and copolymers with acrylic acid (AA) and with vinyl acetate (VAc) have been synthesized and spectroscopically characterized. The ETPFU contents in poly(ETPFU‐co‐AA) and poly(ETPFU‐co‐VAc) obtained by elemental analysis were 21 mol% and 20 mol%, respectively. The average molecular weights of the polymers determined by gel permeation chromatography were as follows: Mn = 8900 g mol?1, Mw = 13 300 g mol?1, Mw/Mn = 1.5 for poly(ETPFU); Mn = 13 500 g mol?1, Mw = 16 600 g mol?1, Mw/Mn = 1.2 for poly(ETPFU‐co‐AA); Mn = 8300 g mol?1, Mw = 11 600 g mol?1, Mw/Mn = 1.4 poly(ETPFU‐co‐VAc). The in vitro cytotoxicity of the compounds against FM3A and U937 cancer cell lines increased in the following order: ETPFU > 5‐FU > poly(ETPFU) > poly(ETPFU‐co‐AA) > poly(ETPFU‐co‐VAc). The in vivo antitumour activities of all the polymers in Balb/C mice bearing the sarcoma 180 tumour cell line were greater than those of 5‐FU and monomer at the highest dose (800 mg kg?1). © 2002 Society of Chemical Industry  相似文献   

16.
A new monomer, exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidocaproic acid (ETCA), was prepared by reaction of maleimidocaproic acid and furan. The homopolymer of ETCA and its copolymers with acrylic acid (AA) or with vinyl acetate (VAc) were obtained by photopolymerizations using 2,2‐dimethoxy‐2‐phenylacetophenone as an initiator at 25 °C. The synthesized ETCA and its polymers were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The apparent average molecular weights and polydispersity indices determined by gel permeation chromatography (GPC) were as follows: Mn = 9600 g mol?1, Mw = 9800 g mol?1, Mw/Mn = 1.1 for poly(ETCA); Mn = 14 300 g mol?1, Mw = 16 200 g mol?1, Mw/Mn = 1.2 for poly(ETCA‐co‐AA); Mn = 17 900 g mol?1, Mw = 18 300 g mol?1, Mw/Mn = 1.1 for poly(ETCA‐co‐VAc). The in vitro cytotoxicity of the synthesized compounds against mouse mammary carcinoma and human histiocytic lymphoma cancer cell lines decreased in the following order: 5‐fluorouracil (5‐FU) ≥ ETCA > polymers. The in vivo antitumour activity of the polymers against Balb/C mice bearing sarcoma 180 tumour cells was greater than that of 5‐FU at all doses tested. © 2001 Society of Chemical Industry  相似文献   

17.
The formation of 4‐alkoxy‐2(5H)‐furanones was achieved via tandem alkoxylation/lactonization of γ‐hydroxy‐α,β‐acetylenic esters catalyzed by 2 mol% of [2,6‐bis(diisopropylphenyl)imidazol‐2‐ylidine]gold bis(trifluoromethanesulfonyl)imidate [Au(IPr)(NTf2)]. The economic and simple procedure was applied to a series of various secondary propargylic alcohols allowing for yields of desired product of up to 95%. In addition, tertiary propargylic alcohols bearing mostly cyclic substituents were converted into the corresponding spiro derivatives. Both primary and secondary alcohols reacted with propargylic alcohols at moderate temperatures (65–80 °C) in either neat reactions or using 1,2‐dichloroethane as a reaction medium allowing for yields of 23–95%. In contrast to [Au(IPr)(NTf2)], reactions with cationic complexes such as [2,6‐bis(diisopropylphenyl)imidazol‐2‐ylidine](acetonitrile)gold tetrafluoroborate [Au(IPr)(CH3CN)][BF4] or (μ‐hydroxy)bis{[2,6‐bis(diisopropylphenyl)imidazol‐2‐ylidine]gold} tetrafluoroborate or bis(trifluoromethanesulfonyl)imidate – [{Au(IPr)}2(μ‐OH)][X] (X=BF4, NTf2) – mostly stop after the alkoxylation. Analysis of the intermediate proved the exclusive formation of the E‐isomer which allows for the subsequent lactonization.  相似文献   

18.
Isomers of 4‐amino‐1,3‐dinitrotriazol‐5‐one‐2‐oxide (ADNTONO) are of interest in the contest of insensitive explosives and were found to have true local energy minima at the DFT‐B3LYP/aug‐cc‐pVDZ level. The optimized structures, vibrational frequencies and thermodynamic values for triazol‐5‐one N‐oxides were obtained in their ground state. Kamlet‐Jacob equations were used to evaluate the performance properties. The detonation properties of ADNTONO (D=10.15 to 10.46 km s−1, P=50.86 to 54.25 GPa) are higher compared with those of 1,1‐diamino‐2,2‐dinitroethylene (D=8.87 km s−1, P=32.75 GPa), 5‐nitro‐1,2,4‐triazol‐3‐one (D=8.56 km s−1, P=31.12 GPa), 1,2,4,5‐tetrazine‐3,6‐diamine‐1,4‐dioxide (D=8.78 km s−1, P=31.0 GPa), 1‐amino‐3,4,5‐trinitropyrazole (D=9.31 km s−1, P=40.13 GPa), 4,4′‐dinitro‐3,3′‐bifurazan (D=8.80 km s−1, P=35.60 GPa) and 3,4‐bis(3‐nitrofurazan‐4‐yl)furoxan (D=9.25 km s−1, P=39.54 GPa). The  NH2 group(s) appears to be particularly promising area for investigation since it may lead to two desirable consequences of higher stability (insensitivity), higher density, and thus detonation velocity and pressure.  相似文献   

19.
Two analogues of the discontinued tumor vascular‐disrupting agent verubulin (Azixa®, MPC‐6827, 1 ) featuring benzo‐1,4‐dioxan‐6‐yl (compound 5 a ) and N‐methylindol‐5‐yl (compound 10 ) residues instead of the para‐anisyl group on the 4‐(methylamino)‐2‐methylquinazoline pharmacophore, were prepared and found to exceed the antitumor efficacy of the lead compound. They were antiproliferative with single‐digit nanomolar IC50 values against a panel of nine tumor cell lines, while not affecting nonmalignant fibroblasts. Indole 10 surpassed verubulin in seven tumor cell lines including colon, breast, ovarian, and germ cell cancer cell lines. In line with docking studies indicating that compound 10 may bind the colchicine binding site of tubulin more tightly (Ebind=?9.8 kcal mol?1) than verubulin (Ebind=?8.3 kcal mol?1), 10 suppressed the formation of vessel‐like tubes in endothelial cells and destroyed the blood vessels in the chorioallantoic membrane of fertilized chicken eggs at nanomolar concentrations. When applied to nude mice bearing a highly vascularized 1411HP germ cell xenograft tumor, compound 10 displayed pronounced vascular‐disrupting effects that led to hemorrhages and extensive central necrosis in the tumor.  相似文献   

20.
The series of bimetallic complexes, [(η5‐C5Me5)Zr(Me)2]2 [N(t‐Bu)C(Me)N (CH2)n NC(Me)N(t‐Bu)] 3 (n=8), 4 (n=6), and 5 (n=4) were prepared in high yield through a simple, one‐pot synthesis involving 2 equiv. of in situ generated (η5‐C5Me5)Zr(Me)3 and the corresponding bis‐carbodiimide, (t‐Bu)NCN (CH2)n NCN(t‐Bu). Compounds 3 – 5 were found to be highly isoselective for the living Ziegler–Natta polymerization of propene upon 100% activation using 2 equiv. of the borate co‐initiator, [PhNHMe2] [B(C6F5)4] ( 2 ), with the degree of stereoselectivity decreasing slightly as the two metal centers are brought closer together [cf., 3 (σ=0.92)> 4 (σ=0.91)> 5 (σ=0.89)]. Under conditions of sub‐stoichiometric activation by 2 , all three bimetallic initiators, 3 – 5 , were found to engage in degenerative transfer living Ziegler–Natta polymerization involving rapid and reversible methyl group transfer between active, (cationic) and dormant, (neutral) methyl, polymeryl zirconium centers. Under these conditions, the frequency of mr triad stereoerror incorporation into the polypropene (PP) microstructure decreases as the two metal centers are brought closer together as a result of increasing barriers for metal‐centered epimerization within the neutral metal site due to correspondingly greater non‐bonded steric interactions vis‐à‐vis mononuclear 1 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号