首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Xin He 《Algorithmica》1990,5(1):545-559
We present an efficient algorithm for 4-coloring perfect planar graphs. The best previously known algorithm for this problem takesO(n 3/2) sequential time, orO(log4 n) parallel time withO(n3) processors. The sequential implementation of our algorithm takesO(n logn) time. The parallel implementation of our algorithm takesO(log3 n) time withO(n) processors on a PRAM.  相似文献   

2.
Parallel algorithms for the problems of selection and searching on sorted matrices are formulated. The selection algorithm takesO(lognlog lognlog*n) time withO(n/lognlog*n) processors on an EREW PRAM. This algorithm can be generalized to solve the selection problem on a set of sorted matrices. The searching algorithm takesO(log logn) time withO(n/log logn) processors on a Common CRCW PRAM, which is optimal. We show that no algorithm using at mostnlogcnprocessors,c≥ 1, can solve the matrix search problem in time faster than Ω(log logn) and that Ω(logn) steps are needed to solve this problem on any model that does not allow concurrent writes.  相似文献   

3.
He  Xin 《Algorithmica》1990,5(1-4):545-559

We present an efficient algorithm for 4-coloring perfect planar graphs. The best previously known algorithm for this problem takesO(n 3/2) sequential time, orO(log4 n) parallel time withO(n3) processors. The sequential implementation of our algorithm takesO(n logn) time. The parallel implementation of our algorithm takesO(log3 n) time withO(n) processors on a PRAM.

  相似文献   

4.
Xin He  Yaacov Yesha 《Algorithmica》1990,5(1):129-145
We develop efficient parallel algorithms for ther-dominating set and thep-center problems on trees. On a concurrent-read exclusive-write PRAM, our algorithm for ther-dominating set problem runs inO(logn log logn) time withn processors. The algorithm for thep-center problem runs inO(log2 n log logn) time withn processors.Xin He was supported in part by an Ohio State University Presidential Fellowship, and by the Office of Research and Graduate Studies of Ohio State University. Yaacov Yesha was supported in part by the National Science Foundation under Grant No. DCR-8606366.  相似文献   

5.
Simulations among concurrent-write PRAMs   总被引:1,自引:0,他引:1  
This paper is concerned with the relative power of the two most popular concurrent-write models of parallel computation, the PRIORITY PRAM [G], and the COMMON PRAM [K]. Improving the trivial and seemingly optimalO(logn) simulation, we show that one step of a PRIORITY machine can be simulated byO(logn/(log logn)) steps of a COMMON machine with the same number of processors (and more memory). We further prove that this is optimal, if processor communication is restricted in a natural way.Support for this research was provided by NSF Grants MCS-8402676 and MCS-8120790, DARPA Contract No. N00039-84-C-0089, an IBM Faculty Development Award, and an NSERC postgraduate scholarship.  相似文献   

6.
A stringw isprimitive if it is not a power of another string (i.e., writingw =v k impliesk = 1. Conversely,w is asquare ifw =vv, withv a primitive string. A stringx issquare-free if it has no nonempty substring of the formww. It is shown that the square-freedom of a string ofn symbols over an arbitrary alphabet can be tested by a CRCW PRAM withn processors inO(logn) time and linear auxiliary space. If the cardinality of the input alphabet is bounded by a constant independent of the input size, then the number of processors can be reduced ton/logn without affecting the time complexity of this strategy. The fastest sequential algorithms solve this problemO(n logn) orO(n) time, depending on whether the cardinality of the input alphabet is unbounded or bounded, and either performance is known to be optimal within its class. More elaborate constructions lead to a CRCW PRAM algorithm for detecting, within the samen-processors bounds, all positioned squares inx in timeO(logn) and using linear auxiliary space. The fastest sequential algorithms solve this problem inO(n logn) time, and such a performance is known to be optimal.This research was supported, through the Leonardo Fibonacci Institute, by the Istituto Trentino di Cultura, Trento, Italy. Additional support was provided by the French and Italian Ministries of Education, by the National Research Council of Italy, by the British Research Council Grant SERC-E76797, by NSF Grant CCR-89-00305, by NIH Library of Medicine Grant ROI LM05118, by AFOSR Grant 90-0107, and by NATO Grant CRG900293.  相似文献   

7.
By restricting weight functions to satisfy the quadrangle inequality or the inverse quadrangle inequality, significant progress has been made in developing efficient sequential algorithms for the least-weight subsequence problem [10], [9], [12], [16]. However, not much is known on the improvement of the naive parallel algorithm for the problem, which is fast but demands too many processors (i.e., it takesO(log2 n) time on a CREW PRAM with n3/logn processors). In this paper we show that if the weight function satisfies the inverse quadrangle inequality, the problem can be solved on a CREW PRAM in O(log2 n log logn) time withn/log logn processors, or in O(log2 n) time withn logn processors. Notice that the processor-time complexity of our algorithm is much closer to the almost linear-time complexity of the best-known sequential algorithm [12].  相似文献   

8.
An optimal parallel algorithm for volume ray casting   总被引:3,自引:0,他引:3  
Volume rendering by ray casting is computationally expensive. For interactive volume visualization, rendering must be done in real time (30 frames/s). Since the typical size of a 3D dataset is 2563, parallel processing is imperative. In this paper, we present anO(logn) EREW algorithm for volume rendering. We useO(n 3) processors that can be optimized toO(log3 n) time withO(n 3/log3 n) processors. We have implemented our algorithm on a MasPar MP-1. The implementation results show that a frame of size 2563 is generated in 11 s by 4096 processors. This time can be further reduced by the use of large number of processors.  相似文献   

9.
A chained-matrices approach for parallel computing thenth convergent of continued fractions is presented. The resulting algorithm computes the entire prefix values of any continued fraction inO(logn) time on the EREW PRAM model or a network withO(n/logn) processors connected by the cube-connectedcycles, binary tree, perfect shuffle, or hypercube. It can be applied to approximate the transcendental numbers, such as ande, inO(logm) time by usingO(m/logm) processors for a result withm-digit precision. We also use it to costoptimally solve the second-order linear recurrence, the polynomial evaluation, the recurrence of vector norm, the general class of recurrence equation defined by Kogge and Stone (1973), and the generalmth order linear recurrence. It is easy to implement because there are only some matrix multiplications and a division operation involved.This work was supported in part by National Science Council of the Republic of China under Contract NSC 77-0408-E002-09.  相似文献   

10.
We give the first efficient parallel algorithms for solving the arrangement problem. We give a deterministic algorithm for the CREW PRAM which runs in nearly optimal bounds ofO (logn log* n) time andn 2/logn processors. We generalize this to obtain anO (logn log* n)-time algorithm usingn d /logn processors for solving the problem ind dimensions. We also give a randomized algorithm for the EREW PRAM that constructs an arrangement ofn lines on-line, in which each insertion is done in optimalO (logn) time usingn/logn processors. Our algorithms develop new parallel data structures and new methods for traversing an arrangement.This work was supported by the National Science Foundation, under Grants CCR-8657562 and CCR-8858799, NSF/DARPA under Grant CCR-8907960, and Digital Equipment Corporation. A preliminary version of this paper appeared at the Second Annual ACM Symposium on Parallel Algorithms and Architectures [3].  相似文献   

11.
In this paper a general technique for reducing processors in simulation without any increase in time is described. This results in an O(√logn) time algorithm for simulating one step of PRIORITY on TOLERANT with processor-time product of O(n log logn); the same as that for simulating PRIORITY on ARBITRARY. This is used to obtain anO(logn/log logn + √logn (log logm ? log logn)) time algorithm for sortingn integers from the set {0,...,m ? 1},mn, with a processor-time product ofO(n log logm log logn) on a TOLERANT CRCW PRAM. New upper and lower bounds for ordered chaining problem on an allocated COMMON CRCW model are also obtained. The algorithm for ordered chaining takesO(logn/log logn) time on an allocated PRAM of sizen. It is shown that this result is best possible (upto a constant multiplicative factor) by obtaining a lower bound of Ω(r logn/(logr + log logn)) for finding the first (leftmost one) live processor on an allocated-COMMON PRAM of sizen ofr-slow virtual processors (one processor simulatesr processors of allocated PRAM). As a result, for ordered chaining problem, “processor-time product” has to be at least Ω(n logn/log logn) for any poly-logarithmic time algorithm. Algorithm for ordered-chaining problem results in anO(logN/log logN) time algorithm for (stable) sorting ofn integers from the set {0,...,m ? 1} withn-processors on a COMMON CRCW PRAM; hereN = max(n, m). In particular if,m =n O(1), then sorting takes Θ(logn/log logn) time on both TOLERANT and COMMON CRCW PRAMs. Processor-time product for TOLERANT isO(n(log logn)2). Algorithm for COMMON usesn processors.  相似文献   

12.
S. Sunder  Xin He 《Algorithmica》1996,16(3):243-262
We present a parallel algorithm for solving the minimum weighted completion time scheduling problem for transitive series parallel graphs. The algorithm takesO(log2 n) time withO(n 3) processors on a CREW PRAM, wheren is the number of vertices of the input graph. This is the first NC algorithm for solving the problem.Research supported in part by NSF Grants CCR-9011214 and CCR-9205982.  相似文献   

13.
This paper determines upper bounds on the expected time complexity for a variety of parallel algorithms for undirected and directed random graph problems. For connectivity, biconnectivity, transitive closure, minimum spanning trees, and all pairs minimum cost paths, we prove the expected time to beO(log logn) for the CRCW PRAM (this parallel RAM machine allows resolution of write conflicts) andO(logn · log logn) for the CREW PRAM (which allows simultaneous reads but not simultaneous writes). We also show that the problem of graph isomorphism has expected parallel timeO(log logn) for the CRCW PRAM andO(logn) for the CREW PRAM. Most of these results follow because of upper bounds on the mean depth of a graph, derived in this paper, for more general graphs than was known before.For undirected connectivity especially, we present a new probabilistic algorithm which runs on a randomized input and has an expected running time ofO(log logn) on the CRCW PRAM, withO(n) expected number of processors only.Our results also improve known upper bounds on the expected space required for sequential graph algorithms. For example, we show that the problems of finding connected components, transitive closure, minimum spanning trees, and minimum cost paths have expected sequential spaceO(logn · log logn) on a deterministic Turing Machine. We use a simulation of the CRCW PRAM to get these expected sequential space bounds.This research was supported by National Science Foundation Grant DCR-85-03251 and Office of Naval Research Contract N00014-80-C-0647.This research was partially supported by the National Science Foundation Grants MCS-83-00630, DCR-8503497, by the Greek Ministry of Research and Technology, and by the ESPRIT Basic Research Actions Project ALCOM.  相似文献   

14.
在EREW PRAM(exclusive-read and exclusive-write parallel random access machine)并行计算模型上,对范围很广的一类无向图的边极大匹配问题,给出时间复杂性为O(logn),使用O((n+m)/logn)处理器的最佳、高速并行算法.  相似文献   

15.
We give an improved parallel algorithm for the problem of computing the tube minima of a totally monotonen ×n ×n matrix, an important matrix searching problem that was formalized by Aggarwal and Park and has many applications. Our algorithm runs inO(log logn) time withO(n2/log logn) processors in theCRCW-PRAM model, whereas the previous best ran inO((log logn)2) time withO(n2/(log logn)2 processors, also in theCRCW-PRAM model. Thus we improve the speed without any deterioration in thetime ×processors product. Our improved bound immediately translates into improvedCRCW-PRAM bounds for the numerous applications of this problem, including string editing, construction of Huffmann codes and other coding trees, and many other combinatorial and geometric problems.This research was supported by the Office of Naval Research under Grants N00014-84-K-0502 and N00014-86-K-0689, the Air Force Office of Scientific Research under Grant AFOSR-90-0107, the National Science Foundation under Grant DCR-8451393, and the National Library of Medicine under Grant R01-LM05118. Part of the research was done while the author was at Princeton University, visiting the DIMACS center.  相似文献   

16.
Thedistance transform(DT) is an image computation tool which can be used to extract the information about the shape and the position of the foreground pixels relative to each other. It converts a binary image into a grey-level image, where each pixel has a value corresponding to the distance to the nearest foreground pixel. The time complexity for computing the distance transform is fully dependent on the different distance metrics. Especially, the more exact the distance transform is, the worse execution time reached will be. Nowadays, quite often thousands of images are processed in a limited time. It seems quite impossible for a sequential computer to do such a computation for the distance transform in real time. In order to provide efficient distance transform computation, it is considerably desirable to develop a parallel algorithm for this operation. In this paper, based on the diagonal propagation approach, we first provide anO(N2) time sequential algorithm to compute thechessboard distance transform(CDT) of anN×Nimage, which is a DT using the chessboard distance metrics. Based on the proposed sequential algorithm, the CDT of a 2D binary image array of sizeN×Ncan be computed inO(logN) time on the EREW PRAM model usingO(N2/logN) processors,O(log logN) time on the CRCW PRAM model usingO(N2/log logN) processors, andO(logN) time on the hypercube computer usingO(N2/logN) processors. Following the mapping as proposed by Lee and Horng, the algorithm for the medial axis transform is also efficiently derived. The medial axis transform of a 2D binary image array of sizeN×Ncan be computed inO(logN) time on the EREW PRAM model usingO(N2/logN) processors,O(log logN) time on the CRCW PRAM model usingO(N2/log logN) processors, andO(logN) time on the hypercube computer usingO(N2/logN) processors. The proposed parallel algorithms are composed of a set of prefix operations. In each prefix operation phase, only increase (add-one) operation and minimum operation are employed. So, the algorithms are especially efficient in practical applications.  相似文献   

17.
A cycleC passing through two specific verticess andt of a biconnected graph is said to be anst-ambitus if its bridges do not interlace in some special way. We present algorithms forst-ambitus for planar biconnected graphs, which are much simpler than the one known for general graphs [MT]. Our algorithm runs inO(n) time on a sequential machine and (logn) parallel time usingO(n/logn) processors on an EREW PRAM.  相似文献   

18.
We consider randomized simulations of shared memory on a distributed memory machine (DMM) where thenprocessors and thenmemory modules of the DMM are connected via a reconfigurable architecture. We first present a randomized simulation of a CRCW PRAM on a reconfigurable DMM having a complete reconfigurable interconnection. It guarantees delay (log *n), with high probability. Next we study a reconfigurable mesh DMM (RM-DMM). Here thenprocessors andnmodules are connected via ann×nreconfigurable mesh. It was already known that ann×mreconfigurable mesh can simulate in constant time ann-processor CRCW PRAM with shared memory of sizem. In this paper we present a randomized step by step simulation of a CRCW PRAM with arbitrarily large shared memory on an RM-DMM. It guarantees constant delay with high probability, i.e., it simulates in real time. Finally we prove a lower bound showing that sizeΩ(n2) for the reconfigurable mesh is necessary for real time simulations.  相似文献   

19.
This paper determines upper bounds on the expected time complexity for a variety of parallel algorithms for undirected and directed random graph problems. For connectivity, biconnectivity, transitive closure, minimum spanning trees, and all pairs minimum cost paths, we prove the expected time to beO(log logn) for the CRCW PRAM (this parallel RAM machine allows resolution of write conflicts) andO(logn · log logn) for the CREW PRAM (which allows simultaneous reads but not simultaneous writes). We also show that the problem of graph isomorphism has expected parallel timeO(log logn) for the CRCW PRAM andO(logn) for the CREW PRAM. Most of these results follow because of upper bounds on the mean depth of a graph, derived in this paper, for more general graphs than was known before. For undirected connectivity especially, we present a new probabilistic algorithm which runs on a randomized input and has an expected running time ofO(log logn) on the CRCW PRAM, withO(n) expected number of processors only. Our results also improve known upper bounds on the expected space required for sequential graph algorithms. For example, we show that the problems of finding connected components, transitive closure, minimum spanning trees, and minimum cost paths have expected sequential spaceO(logn · log logn) on a deterministic Turing Machine. We use a simulation of the CRCW PRAM to get these expected sequential space bounds.  相似文献   

20.
Li  Jie  Pan  Yi  Shen  Hong 《The Journal of supercomputing》2003,24(3):251-258
Topological sort of an acyclic graph has many applications such as job scheduling and network analysis. Due to its importance, it has been tackled on many models. Dekel et al. [3], proposed an algorithm for solving the problem in O(log2 N) time on the hypercube or shuffle-exchange networks with O(N 3) processors. Chaudhuri [2], gave an O(log N) algorithm using O(N 3) processors on a CRCW PRAM model. On the LARPBS (Linear Arrays with a Reconfigurable Pipelined Bus System) model, Li et al. [5] showed that the problem for a weighted directed graph with N vertices can be solved in O(log N) time by using N 3 processors. In this paper, a more efficient topological sort algorithm is proposed on the same LARPBS model. We show that the problem can be solved in O(log N) time by using N 3/log N processors. We show that the algorithm has better time and processor complexities than the best algorithm on the hypercube, and has the same time complexity but better processor complexity than the best algorithm on the CRCW PRAM model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号