首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
《中国测试》2017,(7):49-53
在热重分析测试结果的基础上,采用裂解气相色谱-质谱联用仪(Py GC-MS)分析双酚A型聚砜在500~700℃范围内不同温度下热裂解形成的产物种类及其相对含量。通过对比不同温度下的裂解产物,发现500℃时PSU裂解形成的主要产物是苯酚,550℃时才检测到SO2。随着裂解温度升高,裂解产物的种类增多,SO2的相对含量逐渐升高,直到700℃取代苯酚成为最主要的裂解产物。最后,该文根据不同温度下产生的裂解产物的种类及其相对含量推测PSU产生热裂解的机理。  相似文献   

2.
包装废塑料热解特性实验研究   总被引:4,自引:3,他引:1  
采用DTG-60/60H差热-热重分析仪,对4种典型的单组分塑料即高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)、聚丙烯(PP)、聚苯乙烯(PS)进行了热重/微商热重(TG/DTG)分析,得到了4种废塑料在氮气环境下从室温升温至550℃,不同升温速率条件下的热解规律,为进一步研发废塑料热解装置和探索热解工艺提供了参考数据.  相似文献   

3.
将一定量的聚二甲基硅烷置于烧瓶中进行热裂解,从室温升温至420℃,采用自制馏分收集装置分别收集320℃~330℃,330℃~360℃,360℃~390℃,390℃~420℃,420℃五个温度段的液态馏分,同时收集裂解烧瓶中的融熔部分。采用傅立叶变换红外光谱(FT-IR)和核磁共振波谱(NMR)技术对上述五种馏分和融熔样品分别进行了结构分析与比较,通过液态凝胶色谱(GPC)测量了各馏分的相对分子量及其多分散系数,发现聚二甲基硅烷在320℃左右开始大量裂解重排,不同温度段馏分的结构和分子量存在着差异。  相似文献   

4.
利用TG-FTIR联用分析仪,结合气相裂解质谱,采用国产PAN原丝经预氧化后在200~1350℃范围进行了裂解产物分析。结果表明:PAN预氧化纤维热裂解起始温度在300℃左右,在366.2、624.2和868.0℃出现3个失重速率峰。从纤维中脱除的主要物质如CH_4、NH_3、CO_2、C2H_2等小分子气体产物,同时也包含少量具有较高沸点结构复杂的芳香类物质。裂解产物种类和含量与碳化裂解温度密切相关,其中产生NH_3和C2H_2的裂解温度为380℃,CH_4在480℃出现峰值,CO_2在整个碳化过程均有产生,并且在320、840和1260℃出现峰值。PAN预氧化纤维热裂解的质谱分析很好地验证了TG-FTIR分析结果。  相似文献   

5.
郝振宇  周大利  华坚  雷乐颜  迟文伟 《材料导报》2013,27(12):121-125,130
在高温常压下,以聚二甲基硅烷(Polydimethylsilane,PDMS)和乙酰丙酮铝(Al(AcAc)3)为原料,合成了碳化硅(SiC)陶瓷纤维先驱体———聚铝碳硅烷(Polyaluminocarbosilane,PACS)。采用红外光谱法和凝胶渗透色谱法对制备的PACS进行了结构和分子量表征;通过正交实验设计,研究了反应温度、裂解温度、反应时间和原料配比4种因素对PACS的Si-H键含量、支化度和数均分子量Mn的影响,并用极差分析法进行了主次因素分析,结果表明反应温度是上述三指标的主要影响因素。综合分析各指标对PACS后续纺丝性能和高温碳化过程的影响,确定制备PACS较优的实验条件为:反应温度390℃、裂解温度490℃、反应时间10h及原料Al(AcAc)3与PDMS配比4%(质量分数)。  相似文献   

6.
陶瓷基复合材料制备温度过高一直是制约其引入主动冷却工艺、突破其本征使用温度的主要原因之一。采用差热(TG-DTA)、红外(IR)、X射线衍射(XRD)等分析测试手段,研究了聚碳硅烷(Polycarbosilane,PCS)的裂解及化学转化过程,从理论上说明了先驱体聚碳硅烷(PCS)低温(1000℃)陶瓷化的可行性。结果表明:聚碳硅烷在750℃实现无机化,880℃开始结晶,即聚碳硅烷在高温合金耐受温度范围(1000℃)内,即可实现陶瓷化。以聚碳硅烷(PCS)为先驱体,炭纤维为增强体,采用先驱体浸渍裂解(PIP)工艺低温制备了炭纤维增强碳化硅(C/SiC)陶瓷基复合材料,当制备温度为900℃时,所制备C/SiC复合材料密度为1.70g/cm3,弯曲强度达到657.8MPa,剪切强度为61.02MPa,断裂韧性为22.53MPa.m1/2,并采用扫描电子显微镜(SEM)对复合材料的微观形貌进行了分析。  相似文献   

7.
本文运用了裂解气相色谱对不同结构的聚酰亚胺进行了鉴别,确定了最佳裂解温度为650℃;研究了芳香族聚酰亚胺的热降解碎片,并探讨了热降解机理;对国内外聚酰亚胺样品进行了初步的评价和探讨。  相似文献   

8.
以湿地植物美人蕉(MBC)、再力花(ZBC)和旱伞草(HBC)为原材料,采用热裂解法于300、 500、 700℃下制备生物炭,应用全自动元素分析仪、扫描电子显微镜、红外光谱等手段表征分析生物炭理化性质,采用静态吸附法系统研究生物炭对镉的吸附特性。结果表明:制备温度对生物质炭的理化性质、表面形貌和矿物成分有很大影响;中温(500℃)、高温(700℃)裂解生物炭对镉的吸附性能优于低温(300℃)裂解生物炭的,500℃裂解生物炭吸附性能最好,对Cd2+吸附容量均值可达96.00 mg·g-1,极值可达108.28 mg·g-1,且吸附容量从大到小为ZBC、 MBC、 HBC; 500℃裂解湿地植物基生物炭对Cd2+的吸附平衡时间为30 min左右,适宜的投加量和较大的溶液pH、离子初始质量浓度、反应温度有利于生物炭对Cd2+的吸附,对Cd2+吸附过程更符合Freundlich等温吸附模型和拟二级动力学模型,且属于优惠吸附;裂解温度的升高可以促进生物炭芳香化,改...  相似文献   

9.
研究了三元乙丙橡胶(EPDM)绝热材料配方中的阻燃体系和交联剂对其性能的影响。结果发现,引入次磷酸铝复合物(AHP)、聚磷酸铵(APP)阻燃体系能降低EPDM绝热材料的线性烧蚀率,次磷酸铝复合物阻燃剂能够有效地提高EPDM的耐烧蚀性能和隔热性能。扫描电镜显示,AHP还可以促进EPDM形成隔热性能更好的炭层。随着烧蚀时间的延长,添加了次磷酸铝复合物的EPDM烧蚀率相比添加了APP阻燃剂的更低,在60 s时为0.046 mm/s,绝热层隔热性能最佳,仅为46.4℃。采用力学性能测试、热重分析、隔热性能测试、热裂解气相色谱/质谱联用(Py-GC/MS)测试分别对含AHP体系,交联剂分别为过氧化二异丙苯(DCP)和二-(叔丁基过氧化异丙基)苯(BIPB)的EPDM及其裂解产物进行了分析。发现添加BIPB的EPDM的力学性能虽然下降约30%,背面温度上升17℃,但其热稳定性几乎不受影响,有害的热裂解产物种类明显减少。  相似文献   

10.
本文以裂解-质谱联用、SEM、XRD、UV、Raman光谱技术,探讨了氧化石墨烯(graphene oxide GO)工艺制备中高温阶段的温度对GO性质的影响及GO对环境温度的稳定性。GO的分散性实验显示:制备温度控制在70~90℃范围内,制备出GO的分散性较好;SEM显示:80℃时所制备的GO能以单层形式分散在水溶液中,而120℃则为多层聚集体分散;裂解-质谱联用实验显示:GO在100℃及以上将出现脱羧反应,使GO不稳定;XRD、UV、Raman实验均证实:制备温度在120℃或更高时,GO不能被制备。因此,Hummers法制备GO,高温阶段应控制在70~90℃之间。XRD实验结果还显示:GO固态时,在120℃或更高温度下不能稳定存放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号