首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, polypropylene (PP)/clay nanocomposites containing different concentrations of ethylene‐methacrylic acid ionomer (i.e. Surlyn®) were prepared, and the effect of ionomer on clay dispersion was studied via WAXD, rheology, SEM, and TEM. The role of the ionomer in the nanocomposites was compared with that of maleic anhydride grafted PP (PP‐g‐MA), which has been widely used as a compatibilizer in making PP/clay nanocomposites. With an increase in the concentration of compatibilizer, the position of d001 peak of OMMT shifted toward a lower angle for PP‐g‐MA system, while the position remained almost unchanged for Surlyn system, in which a larger interlayer spacing (d001) was found with respect to the former. In rheology, the addition of the ionomer led to a gradual increase in both moduli and complex viscosity, and the nonterminal behavior at low frequency was observed in both systems. In addition, the ternary hybrid containing 20 wt % Surlyn achieved the largest enhancement in relative viscosity, which was more than that of the nanocomposite prepared from pure Surlyn or pure PP, presumably indicative of the existence of strong interaction between the components. Finally, SEM and TEM micrographs demonstrated that exfoliated structure was preferred for PP/Surlyn/OMMT hybrids, while intercalated morphology for PP/PP‐g‐MA/OMMT. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4024–4034, 2007  相似文献   

2.
This study focuses on the degree of dispersion and structural development of organomodified MMT clay (OMMT) during processing of polypropylene clay nanocomposites using both conventional and nonconventional characterization techniques. PP‐g‐MA and Cloisite 15A were melt blended with three different grades of PP separately in a micro‐twin screw compounder at selected screw speed and temperature. The clay was modified with fluorescent dyes and the adsorbed dye content in the clay gallery was estimated by using UV‐spectrophotometric method. The effects of residence time and molecular weight of the PP matrix on the clay dispersion were studied. The extent of dispersion and exfoliation of the clay in polymer matrix determined from the torque versus time data obtained from microcompounder. It was further supported by XRD, SEM, TEM, and DSC analysis. Offline dielectric and fluorescence spectrophotometric studies were also carried out. Changes in dielectric constant and dielectric loss with both frequency and temperature yielded quantitative information about the extent of clay exfoliation and intercalation in the polymer matrix. It was observed that with an increase in MFI (decrease in molecular weight) and mixing time, the extent of clay dispersion and exfoliation were also improved due to easy diffusion of polymer chains inside clay gallery. POLYM. COMPOS., 31:2007–2016, 2010. © 2010 Society of Plastics Engineers  相似文献   

3.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic montmorillonite (OMMT) were prepared by melt compounding. The sodium montmorillonite (Na‐MMT) was modified using three different types of alkyl ammonium salts, namely dodecylamine, 12‐aminolauric acid, and stearylamine. The effect of clay modification on the morphological and mechanical properties of PA6/PP nanocomposites was investigated using x‐ray diffraction (XRD), transmission electron microscopy (TEM), tensile, flexural, and impact tests. The thermal properties of PA6/PP nanocomposites were characterized using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and heat distortion temperature (HDT). XRD and TEM results indicated the formation of exfoliated structure for the PA6/PP nanocomposites prepared using stearylamine modified montmorillonite. On the other hand, a mixture of intercalated and exfoliated structures was found for the PA6/PP nanocomposites prepared using 12‐aminolauric acid and dodecylamine modified montmorillonite. Incorporation of OMMT increased the stiffness but decreased the ductility and toughness of PA6/PP blend. The PA6/PP nanocomposite containing stearylamine modified montmorillonite showed the highest tensile, flexural, and thermal properties among all nanocomposites. This could be attributed to better exfoliated structure in the PA6/PP nanocomposite containing stearylamine modified montmorillonite. The storage modulus and HDT of PA6/PP blend were increased significantly with the incorporation of both Na‐MMT and OMMT. The highest value in both storage modulus and HDT was found in the PA6/PP nanocomposite containing stearylamine modified montmorillonite due to its better exfoliated structure. POLYM. COMPOS., 31:1156–1167, 2010. © 2009 Society of Plastics Engineers  相似文献   

4.
The microstructure and mechanical properties of polypropylene (PP)/OMMT binary nanocomposites and PP/styrene‐6‐(ethylene‐co‐butylenes)‐6‐styrene triblock copolymer (SEBS)/OMMT ternary nanocomposites were investigated using X‐ray diffraction (XRD), transmission electron microscopy (TEM), and rheology and electromechanical testing machine. The results show that the organoclay layers are mainly intercalated and partially exfoliated in the PP‐based nanocomposites. The additions of SEBS and OMMT have no significant effect on the crystallization behavior of PP. At the same time, it can be concluded that the polymer chains of PP and SEBS have intercalated into the organoclay layers and increase the gallery distance after blending process based on the analytical results from TEM, XRD, and rheology, which result in the form of a percolated nanostructure in the PP‐based nanocomposites. The results of mechanical properties show that SEBS filler greatly improve the notched impact strength of PP, but with the sacrifice of strength and stiffness. OMMT can improve the strength and stiffness of PP and slightly enhance the notched impact strength of PP/PP‐g‐MA. In comparison with neat PP, PP/OMMT, and PP/SEBS binary composites, notched impact toughness of the PP/SEBS/OMMT ternary composites significantly increase. Moreover, the stiffness and strength of PP/SEBS/OMMT ternary nanocomposites are slightly enhanced when compared with neat PP. It is believed that the synergistic effect of both SEBS elastomer and OMMT nanoparticles account for the balanced mechanical performance of the ternary nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Morphological, melt rheological and dynamic mechanical properties of low-density polyethylene (LDPE)/ethylene–octene copolymer (POE)/organo-montmorillonite (OMMT) nanocomposites, prepared via melt compounding were studied. The XRD traces indicated different levels of intercalated structures for the nanocomposites. Addition of a compatibilizer (PE-g-MA) improved the intercalation process. TEM results revealed existence of clay layers in both phases but they were mainly localized in the elastomeric POE phase. Addition of 5 wt% OMMT to the LDPE/POE blend led to reduction in the size of the elastomer particles confirmed by AFM. The complex viscosity and storage modulus showed little effect of the presence of the clay when no compatibilizer was added. As the extent of exfoliation increased with addition of compatibilizer, the linear viscoelastic behavior of the composites gradually changed specially at low-frequency regions. The interfacially compatibilized nanocomposites with 5 wt% OMMT had the highest melt viscosity and modulus among all the studied nanocomposites and blends. Also, this particular composition showed the best improvement in dynamic storage modulus. The results indicated that clay dispersion and interfacial adhesion, and consequently different properties of LDPE/POE/clay nanocomposites, are greatly affected by addition of compatibilizer.  相似文献   

6.
梁玉蓉  谭英杰 《化工学报》2008,59(6):1571-1577
采用熔体插层法制备聚丙烯(PP)/有机黏土(OMMT)纳米复合材料。XRD和TEM的测试结果表明,采用熔体插层法制备的PP/OMMT复合材料是剥离型纳米复合材料。力学性能实验结果表明,相容剂的加入提高了PP与OMMT之间的相互作用,使其各项力学性能都得到了提高;PP/OMMT纳米复合材料的各项力学性能在有机黏土含量较小的情况下,就可以有较大幅度的提高;与纯PP相比,相容剂含量为10 phr、有机黏土用量为1 phr的聚丙烯基纳米复合材料具有最好的各项力学性能。  相似文献   

7.
Maleated ethylene‐propylene‐diene rubber (EPDM‐g‐MA) toughened polyamide 6 (PA6)/organoclay (OMMT) nanocomposites were prepared by melt blending. The role of OMMT in the morphology of the ternary composites and the relationship between the morphology and mechanical properties were investigated by varying the blending sequence. The PA6/EPDM‐g‐MA/OMMT (80/20/4) composites prepared by four different blending sequences presented distinct morphology and mechanical properties. The addition of OMMT could obviously decrease viscosity of the matrix and weaken the interfacial interactions between PA6 and EPDM‐g‐MA when blending EPDM‐g‐MA with a premixed PA6/OMMT nacocomposite, resulting in the increase of rubber particle size. The final mechanical properties are not only determined by the location of OMMT, but also by the interfacial adhesion between PA6 and EPDM‐g‐MA. Having maximum percentage of OMMT platelets in the PA6 matrix and keeping good interfacial adhesion between PA6 and EPDM‐g‐MA are beneficial to impact strength. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

8.
In the present investigation, nanocomposites of polypropylene (PP)‐montmorillonite (MMT) clay were prepared by a single‐step compounding method to study the influence of hyperbranched polyester (HBPE) on rheological and mechanical properties of PP composites in the presence of a compatibilizer. In service of this objective, polyvinylchloride‐grafted‐maleic anhydride (PP‐g‐MA) was used as a compatibilizer for hydrophobic PP and hydrophilic clay. Rheological property in terms of melt viscosity was examined by a Brabender torque rheometer. The composite's morphology was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), whereas the dispersion state of nanoparticles in the PP matrix was studied by X‐ray diffraction (XRD). The thermal behavior of nanocomposites was examined by differential scanning calorimetry (DSC). The analysis of results confirmed that the interactions among both additives significantly influenced the morphology, rheology, and thermomechanical properties of the nanocomposites. J. VINYL ADDIT. TECHNOL., 22:72–79, 2016. © 2014 Society of Plastics Engineers  相似文献   

9.
Polypropylene (PP)/polystyrene‐block‐poly(ethylene‐co‐butylenes)‐block‐polystyrene (SEBS)/organo‐montmorillonite (OMMT) nanocomposites of varying concentrations of maleic anhydride‐grafted polypropylene (PP‐g‐MA) were prepared by continuous mixing assisted by ultrasonic oscillation. The structure and morphology of nanocomposites were investigated by X‐ray diffraction (XRD), transmission electron microscopy, and scanning electron microscopy. It was found that both PP‐g‐MA and ultrasonic oscillation could enhance the intercalation and exfoliation of OMMT in PP matrix. Meanwhile, the formation of PP could be induced by ultrasonic irradiation at a power of more than 540 W. Rheological properties including complex viscosity, storage, and loss modulus of nanocomposites were increased after adding PP‐g‐MA or ultrasonic treatment. The results of mechanical properties showed that PP‐g‐MA could improve the tensile strength and tensile modulus of nanocomposites, but with the sacrifice of impact strength. This problem could be improved by ultrasound due to the reduced particle size of SEBS. However, the mechanical properties would be reduced by ultrasonic treatment with higher intensity due to the polymer degradation. Therefore, the synergistic effect of both compatibilizer and ultrasound should account for the balance between toughness and stiffness of PP/SEBS/OMMT ternary nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41202.  相似文献   

10.
In this study, we report the synergistic effect of nanoclay and maleic anhydride grafted polyethylene (PE‐g‐MA) on the morphology and properties of (80/20 w/w) nylon 6/high density polyethylene (HDPE) blend. Polymer blend nanocomposites containing nanoclay with and without compatibilizer (PE‐g‐MA) were prepared by melt mixing, and their morphologies and structures were examined with scanning electron microscopy (SEM) and wide angle X‐ray diffractometer (WAXD) study. The size of phase‐separated domains decreased considerably with increasing content of nanoclay and PE‐g‐MA. WAXD study and transmission electron microscopy (TEM) revealed the presence of exfoliated clay platelets in nylon 6 matrix, as well as, at the interface of the (80/20 w/w) nylon 6/HDPE blend–clay nanocomposites. Addition of PE‐g‐MA in the blend–clay nanocomposites enhanced the exfoliation of clays in nylon 6 matrix and especially at the interface. Thus, exfoliated clay platelets in nylon 6 matrix effectively restricted the coalescence of dispersed HDPE domains while PE‐g‐MA improved the adhesion between the phases at the interface. The use of compatibilizer and nanoclay in polymer blends may lead to a high performance material which combines the advantages of compatibilized polymer blends and the merits of polymer nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
于建  喻阳海  郭朝霞 《塑料》2005,34(4):48-52
研究了有机蒙脱土对PA6/PP合金体系的作用机制及其对材料性能的影响。结果表明,OMMT的添加可以提高体系的拉伸强度、弯曲强度和弯曲模量,但冲击强度会有某种程度的下降;OMMT主要分散在PA6连续相中,且当其添加量质量份数低于5%时,可以在PA6相中实现较充分的剥离;OMMT对PA6/PP合金体系有着显著的增容作用,这可能和片层对PP分散相凝聚时的阻隔,以及片层所起到的类似接枝物的增容作用有关;OMMT在PA6基体中被充分剥离后,将有利于使复合体系的拉伸强度、弯曲强度得到提高,但OMMT片层及和片层有关的类似接枝物的存在,将束缚并限制界面层附近PP相的屈服,而使材料冲击韧性下降。  相似文献   

12.
Summary: Polyamide 6 (PA6)/Poly(propylene) (PP)/organoclay (octadecylamine intercalated montmorillonite) systems with and without compatibilizer (maleated poly(propylene) and ethylene/propylene‐based rubber (PPgMA and EPRgMA, respectively)) were produced by extrusion melt blending and the clay dispersion was characterized by transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The rheological behaviour of the nanocomposites was determined by various methods, viz melt flow index (MFI), capillary and plate/plate rheological measurements. Attempts were made to trace the rheological parameters that reliably reflect the observed changes in the clay dispersion. It was found that some parameters in the viscoelastic range derived from frequency sweep measurements using a plate/plate rheometer are a suitable indicator for changes in the clay dispersion. High initial viscosity with a strong reduction as a function of frequency was attributed to improved clay exfoliation. The latter was also reflected by a high initial shear storage modulus (G′) along with its small change with the frequency.

Variation of the storage modulus (G′) as a function of frequency for the PA6/PP nanocomposites. Note: this figure also indicates how the slopes at low and high shear rates were determined.  相似文献   


13.
The water absorption and hygrothermal aging behavior of organomontmorillonite (OMMT) reinforced polyamide 6/polypropylene (PA6/PP ratio = 70/30), with and without maleated PP (MAH‐g‐PP), was studied at three different temperatures (30, 60, and 90°C). The water absorption and hygrothermal aging response of the composites was studied and analyzed by tensile tests and morphology assessment (scanning electron microscopy and transmission electron microscopy), indicating the effect of the immersion temperature, OMMT, and MAH‐g‐PP compatibilizer. The mathematical treatment used in analyzing the data was the single free phase model of diffusion, which assumed Fickian diffusion and utilized Fick's second law of diffusion. The kinetics of water absorption of the PA6/PP nanocomposites conformed to Fickian law behavior, whereby the initial moisture absorption follows a linear relationship between the percentage gain at any time t and t1/2 (the square root of time), followed by saturation. It was found that the equilibrium moisture content and the diffusion coefficient are dependent on the OMMT loading, MAH‐g‐PP concentration, and immersion temperatures. Both the tensile modulus and strength of the PA6/PP nanocomposites deteriorated after being exposed to hygrothermal aging. MAH‐g‐PP acted as a good compatibilizer for PA6/PP/OMMT nanocomposites, which was attributed to its higher retention ability in modulus and strength (in the wet and redried states), lower equilibrium moisture content, and reduced water diffusivity of the nanocomposites. Morphological sketches for both uncompatibilized and MAH‐g‐PP compatibilized PA6/PP/OMMT nanocomposites, toward water uptake are proposed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 780–790, 2005  相似文献   

14.
HDPE/Clay nanocomposites were prepared using laboratory made HDPE grafted maleic anhydride (HDPE‐g‐MA) as a compatibilizer. Rheology, morphology, and thermal behavior of nanocomposites were studied. The results showed that increasing the degree of grafted MA increased the intercalation of clay platelets leading to their exfoliation. The presence of free MA enhanced the clay dispersion via regrafting onto PE matrix. Although the presence of antioxidant improved the thermal stability of PE, it decreased the clay dispersion because of inhibition of regrafting of free MAs. The exfoliated nanocomposites exhibited higher viscosity and elasticity than those of intercalated nanocomposites. They displayed viscosity upturn and nonterminal behavior of elasticity at low frequency ranges, representative of the creation of three‐dimensional networks via the individual clay platelets and/or chain bridging between the platelets. The presence of such a network was evidenced by tan δ studies. Incorporation of clay remarkably increased the thermal stability of the PE. It was found that the effect of Hofmann elimination reaction can effectively be eliminated using the antioxidant. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

15.
In this study, nanocomposites based on polyamide 6/carboxylated acrylonitrile butadiene rubber (PA6/XNBR) reinforced by the clay montmorillonite (OMMT) (Cloisite 20A and Cloisite 30B) were prepared by melt mixing. Glycidyl methacrylate-grafted XNBR (XNBR-g-GMA) compatibilizer was used for immiscible blends of PA6/XNBR. The results illustrated that OMMT wanted to be selectively present in the more hydrophilic PA6 phase. Also, by adding the XNBR-g-GMA compatibilizer and increasing OMMT content, tensile strength, rheological and dynamic mechanical properties of the nanocomposites improved. According to transmission electron microscopy (TEM) images, a few layers of OMMT (Cloisite 20A) in the XNBR-g-GMA compatibilizer phase was observed. The results of X-ray diffractometry and TEM analyses demonstrated that the formation of intercalated or exfoliated structures for both types of OMMT nanocomposites. In end of all analysis was found PA6/XNBR reinforced by the Cloisite 30B could be substantially improved by adding XNBR-g-GMA as a compatibilizer when compared to those reinforced by Cloisite 20A.  相似文献   

16.
Polyamide 6 (PA6)/maleated ethylene–propylene–diene rubber (EPDM‐g‐MA)/organoclay (OMMT) composites were melt‐compounded through two blending sequences. Glycidyl methacrylate (GMA) was used as a compatibilizer for the ternary composites. The composite prepared through via the premixing of PA6 with OMMT and then further melt blending with EPDM‐g‐MA exhibited higher impact strength than the composite prepared through the simultaneous blending of all the components. However, satisfactorily balanced mechanical properties could be achieved by the addition of GMA through a one‐step blending sequence. The addition of GMA improved the compatibility between PA6 and EPDM‐g‐MA, and this was due to the reactions between PA6, EPDM‐g‐MA, and GMA, as proved by Fourier transform infrared analysis and solubility (Molau) testing. In addition, OMMT acted as a compatibilizer for PA6/EPDM‐g‐MA blends at low contents, but it weakened the interfacial interactions between PA6 and EPDM‐g‐MA at high contents. Both OMMT and GMA retarded the crystallization of PA6. The complex viscosity, storage modulus, and loss modulus of the composites were obviously affected by the addition of OMMT and GMA. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Polypropylene/organic‐montmorillonite (PP/OMMT) nanocomposites were prepared via a solid‐phase PP graft (TMPP) with a higher grafting level as the compatibilizer. The effects of the compatibilizer on the structure and properties of PP/OMMT nanocomposites were investigated. The structure of the nanocomposites were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that when the weight ratio of TMPP and OMMT is greater than 1:1, the OMMT can be dispersed in PP matrix uniformly at the nanoscale. The mechanical properties of the nanocomposites reached a maximum when the weight ratio of TMPP and OMMT is 1:1, although more uniform dispersion was achieved at a higher content of TMPP. The mechanical properties of the nanocomposites decrease with the content of TMPP. The crystallization behavior, dynamic rheological property, and thermal stability of the nanocomposites were investigated by differential scanning calorimetry (DSC), dynamic rheological analysis, and thermal gravimetric analysis (TGA), respectively. Due to the synergistic effects of TMPP and OMMT on the crystallization of PP, the crystallization peak temperature of the nanocomposites increased remarkably compared with that of the neat PP. TMPP shows β‐phase nucleating ability and OMMT promotes the development of β‐phase crystallite. The nanocomposites show restricted melt flow and enhanced temperature sensitivity compared with the neat PP. The thermal stability of the nanocomposites is obviously improved compared with that of the neat PP. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers.  相似文献   

18.
A systematic approach was adopted to study multicomponent clay-containing nanocomposites using compatibilized and non-compatibilized blends of polyamide 6 (PA6)/acrylonitrile-butadiene-styrene terpolymer (ABS) and their organoclay (OMMT) nanocomposites. For this purpose PA6/styrene-acrylonitrile copolymer (SAN) based blends and nanocomposites were selected as simple model systems. In this way the role of each component of the systems, especially the clay, compatibilizer, and polybutadiene fraction on the formation of intercalated or exfoliated OMMT structures as well as resulting dynamic mechanical properties (DMA) could be elucidated. Structural analysis of the model systems using theoretical approach, and X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and DMA revealed that the most crucial factor in controlling the morphology and achieving different levels of dispersion is the extent of interaction between clay and the polymer matrix. Morphological analysis revealed that the OMMT layers were dispersed and exfoliated largely in the PA6 phase but, some were also accumulated at the rubber particle surface which remained non-intercalated. The effect of a compatibilizer on the dispersion of OMMT was not completely clear. The SAN based nanocomposites containing PA6 showed fully exfoliated OMMT structures, whereas the ABS based nanocomposites, having an additional rubber fraction, showed a mixed exfoliated and also partly non-intercalated morphology. The OMMT did not change the general occurrence of the co-continuous structures but refined the structures and led to mechanical stiffening as indicated by the DMA results. A correlation was established between the changes in the morphological states and the DMA properties.  相似文献   

19.
Polyethylene‐based ternary nanocomposites were prepared with different clay structures, obtained by the modification of purified Resadiye bentonite as the reinforcement, a random terpolymer of ethylene, butyl acrylate, and maleic anhydride with the trade name Lotader3210 as the compatibilizer, and linear low‐density polyethylene (LLDPE) as the polymer matrix in an intensive batch mixer. The quaternary ammonium/phosphonium salts used for the modification of bentonite were dimethyldioctadecyl ammonium (DMDA) chloride (Cl), tetrakisdecyl ammonium (TKA) bromide (Br), and tributylhexadecyl phosphonium (TBHP) Br. The effects of the physical properties and structure of the organoclay on the clay dispersion were studied at different clay contents (2 and 5 wt %) and at a compatibilizer/organoclay ratio of 2.5. The extent of organoclay dispersion was determined by X‐ray diffraction (XRD) and was verified by transmission electron microscopy (TEM), mechanical testing, and rheological analysis. XRD analysis showed that the nanocomposite with the organoclay DMDA contained intercalated silicate layers, as also verified by TEM. The TEM analysis of the nanocomposites with TBHP exhibited intercalated/partially exfoliated clay dispersion. TKA, with a crowded alkyl environment, sheltered and hindered the intercalation of polymer chains through the silicate layers. In comparison to pure LLDPE, nanocomposites with a 33–41% higher Young's modulus, 16–9% higher tensile strength, and 75–144% higher elongation at break were produced with DMDA and TBHP, respectively (at 5 wt % organoclay). The storage modulus increased by 807–1393%, and the dynamic viscosity increased by 196–339% with respect to pure LLDPE at low frequencies for the samples with DMDA and TBHP (at 5 wt % organoclay). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
采用熔融共混法制备高密度聚乙烯(HDPE)/聚酰胺(PA)6/有机蒙脱土(OMMT)多元复合材料,借助X射线衍射仪、扫描电子显微镜、透射电子显微镜等分析了OMMT对HDPE/PA 6体系结构、性能的影响及作用机理。加入的少量OMMT以剥离形态分散在基体中,能起到较好的增容作用,并且改善了材料的冲击性能。但OMMT的加入使材料的熔体流动速率降低,剪切黏度增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号