首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
《Applied Soft Computing》2008,8(1):232-238
Reservoir operation of dams during floods is a complex, nonlinear, nonstationary control process and is significantly affected by hydrological conditions which are not predictable beforehand. In this paper, an operation method based on fuzzy logic control is presented for the operation of spillway gates of reservoirs during floods. The rule base of fuzzy logic controller is optimally determined by using tabu search algorithm which is a modern popular heuristic algorithm. Simulation results demonstrate that the proposed approach based on fuzzy logic controller designed by using tabu search produces an accurate and efficient solution for the reservoir operation of dams.  相似文献   

2.
Conventional (type-1) fuzzy logic controllers have been commonly used in various power converter applications. Generally, in these controllers, the experience and knowledge of human experts are needed to decide parameters associated with the rule base and membership functions. The rule base and the membership function parameters may often mean different things to different experts. This may cause rule uncertainty problems. Consequently, the performance of the controlled system, which is controlled with type-1 fuzzy logic controller, is undesirably affected. In this study, a type-2 fuzzy logic controller is proposed for the control of buck and boost DC–DC converters. To examine and analysis the effects of the proposed controller on the system performance, both converters are also controlled using the PI controller and conventional fuzzy logic controller. The settling time, the overshoot, the steady state error and the transient response of the converters under the load and input voltage changes are used as the performance criteria for the evaluation of the controller performance. Simulation results show that buck and boost converters controlled by type-2 fuzzy logic controller have better performance than the buck and boost converters controlled by type-1 fuzzy logic controller and PI controller.  相似文献   

3.
An intelligent and autonomous flight control system for an atmospheric re-entry vehicle is investigated, based on fuzzy logic control and aerodynamic inversion computation. A common PD-Mamdani fuzzy logic controller is designed for all the five re-entry flight regions characterized by different actuator configurations. A linear transformation to the controller inputs is applied to tune the controller performance for different flight regions while using the same fuzzy rule base and inference engine. An autonomous actuator allocation algorithm is developed, based on the aerodynamic inversion computation, to cover all the five actuator configurations with the same fuzzy logic controller. Simulation results of tracking both a bench mark trajectory and a given nominal re-entry trajectory are presented to evaluate the control performance.  相似文献   

4.
The problem of part mating and assembly with close tolerances has been addressed in the past by active or passive compliance and by force/position control. With ambient sensor and transmission noise and with imprecise measurements it is often difficult to attain high precision in manipulator positioning. A compliant wrist position sensor with a fuzzy logic rule base was designed by the author to address this problem. In this article, after a brief review of this sensor, optimization of its fuzzy rule base is discussed. The optimization results are then presented. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
A new analytic fuzzy logic control (FLC) system synthesis without any rule base is proposed. For this purpose the following objectives are preferred and reached: 1) an introduction of a new adaptive shape of fuzzy sets and a new adaptive distribution of input fuzzy sets, 2) a determination of an analytic activation function for activation of output fuzzy sets, instead of using of min-max operators, and 3) a definition of a new analytic function that determines the positions of centers of output fuzzy sets in each mapping process, instead of definition of the rule base. A real capability of the proposed FLC synthesis procedures is presented by synthesis of FLC of robot of RRTR-structure.  相似文献   

6.
A concept called the decomposition of multivariable control rules is presented. Fuzzy control is the application of the compositional rule of inference and it is shown how the inference of the rule base with complex rules can be reduced to the inference of a number of rule bases with simple rules. A fuzzy logic based controller is applied to a simple magnetic suspension system. The controller has proportional, integral and derivative separate parts which are tuned independently. This means that all parts have their own rule bases. By testing it was found that the fuzzy PID controller gives better performance over a typical operational range then a traditional linear PID controller. The magnetic suspension system and the contact-less optical position measurement system have been developed and applied for the comparative analysis of the real-time conventional PID control and the fuzzy control.  相似文献   

7.
The requirement for new flexible adaptive grippers is the ability to detect and recognize objects in their environments. It is known that robotic manipulators are highly nonlinear systems, and an accurate mathematical model is difficult to obtain, thus making it difficult то control using conventional techniques. Here, a novel design of an adaptive neuro fuzzy inference strategy (ANFIS) for controlling input displacement of a new adaptive compliant gripper is presented. This design of the gripper has embedded sensors as part of its structure. The use of embedded sensors in a robot gripper gives the control system the ability to control input displacement of the gripper and to recognize particular shapes of the grasping objects. Since the conventional control strategy is a very challenging task, fuzzy logic based controllers are considered as potential candidates for such an application. Fuzzy based controllers develop a control signal which yields on the firing of the rule base. The selection of the proper rule base depending on the situation can be achieved by using an ANFIS controller, which becomes an integrated method of approach for the control purposes. In the designed ANFIS scheme, neural network techniques are used to select a proper rule base, which is achieved using the back propagation algorithm. The simulation results presented in this paper show the effectiveness of the developed method.  相似文献   

8.
An automatic fuzzy rule base generation method is proposed to control nonlinear and timevarying turning processes with constant cutting forces. Based on this study, the optimum fuzzy rule base for the control of turning processes can be self-organized without the need for experienced manufacturing engineers. A fuzzy logic controller based on these fuzzy rules can adjust feed rate on line to achieve an optimal production rate in turning operations.  相似文献   

9.
Traffic networks are getting big and complex day by day with a rapid traffic growth. Existing Type-2 (T2) fuzzy logic works well in optimizing the waiting time of traffic at a big junction, but the rule base of T2 fuzzy logic is heavily dependent on previous traffic data, rather than real-time data. Moreover, it fails in changing and updating the waiting time in any junction with a high rate of traffic. In addition, very big junctions contain dynamic traffic data that is characterized by a high level of uncertainty, which is difficult to be handled by type-2 fuzzy logic. To cope with this situation, Shadowed Type-2 (ST2) fuzzy logic is proposed as it works well in the domain having very clumsy and uncertain data. It increases the uncertainty of a fuzzy set by partitioning it into different region. Thus, based on ST2 fuzzy rule base, a ST2 fuzzy waiting time simulator is created, whose output is implemented in a proposed real-time traffic-based Time Optimized Shortest Path (TOSP) model. It helps in structuring the optimized time path from one location to another. This can be done by taking real time traffic data from the upcoming junction, calculating the waiting time using ST2 fuzzy rule base, and finally directing the vehicle to take its optimized path, which results in a reduction in the overall waiting time of each junction. To demonstrate the superiority of the proposed model, a case study of a multi-directional (six directional) junction is presented. Success of this model easies the process of proposing it as a mobile application, which can help in reducing the waiting time in junctions of metropolitan areas.  相似文献   

10.
This paper presents a design procedure for Mamdani fuzzy logic controller including rule base minimisation. The rules are modelled with binary weights on which constraints are imposed in order to ensure consistency. A genetic algorithm is used for finding stabilising controllers that minimise the number of rules. The cost function includes a stability/performance coefficient which insures that stable, performance satisfying controllers are given the highest possible fitness. The number of fuzzy sets for the input and the control variables are set by the user and the design procedure is concerned only with the rule base and the distribution of the fuzzy sets in the universes of discourses. Two examples were studied: the control of the pole and cart system and the control of the concentration in CSTR. In both cases, the fuzzy sets were isosceles triangles evenly distributed, in the universe of discourses.  相似文献   

11.
The application of type-2 fuzzy logic to the problem of automated quality control in sound speaker manufacturing is presented in this paper. Traditional quality control has been done by manually checking the quality of sound after production. This manual checking of the speakers is time consuming and occasionally was the cause of error in quality evaluation. For this reason, by applying type-2 fuzzy logic, an intelligent system for automated quality control in sound speaker manufacturing is developed. The intelligent system has a type-2 fuzzy rule base containing the knowledge of human experts in quality control. The parameters of the fuzzy system are tuned by applying neural networks using, as training data, a real time series of measured sounds produced by good sound speakers. The fractal dimension is used as a measure of the complexity of the sound signal.  相似文献   

12.
The present paper is a humble attempt to develop a fuzzy function approximator which can completely self-generate its fuzzy rule base and input-output membership functions from an input-output data set. The fuzzy system can be further adapted to modify its rule base and output membership functions to provide satisfactory performance. This proposed scheme, called generalised influential rule search scheme, has been successfully implemented to develop pure fuzzy function approximators as well as fuzzy logic controllers. The satisfactory performance of the proposed scheme is amply demonstrated by implementing it to develop different major components in a process control loop. The versatility of the algorithm is further proved by implementing it for a benchmark nonlinear function approximation problem.  相似文献   

13.
In this paper, the application of neural networks and neurofuzzy systems to the control of robotic manipulators is examined. Two main control structures are presented in a comparative manner. The first is a Counter Propagation Network-based Fuzzy Controller (CPN-FC) which is able to self-organize and correct on-line its rule base. The self-tuning capability of the fuzzy logic controller is attained by taking advantage of the structural equivalence between the fuzzy logic controller and a counterpropagation network. The second control structure is a more familiar neural adaptive controller based on a feedforward (MLP) network. The neural controller learns the inverse dynamics of the robot joints, and gradually eliminates the model uncertainties and disturbances. Both schemes cooperate with the computed torque control algorithm, and in that way the reduction of their complexity is achieved. The ability of adaptive fuzzy systems to compete with neural networks in difficult control problems is demonstrated. A sufficient set of numerical results is included.  相似文献   

14.
基于神经-模糊控制系统的移动机器人动态路径规划   总被引:1,自引:1,他引:0       下载免费PDF全文
针对机器人在未知、复杂环境下从源到目标之间,避开各种类型的障碍的问题,设计了系统的神经-模糊控制算法进行动态路径规划:设计了合理的模糊推理体系,实现输入模糊化、模糊推理规则库、输出去模糊化控制;根据规则库设计神经网络结构,简化网络结构和参数;采用QPSO算法训练网络;状态变量的存储和管理策略,解决了“U”型障碍物内的死循环路径问题。实验结果表明,在以上算法的控制下,机器人能够朝着目标,规划产生合理的路径,不会陷入死循环。  相似文献   

15.
高速公路非线性反馈模糊逻辑匝道控制器   总被引:6,自引:0,他引:6  
入口匝道控制是高速公路交通控制和智能运输系统的重要组成部分,但现有的入口匝道控制效果尚不理想.为此,本文提出一种非线性反馈方法用模糊逻辑进行入口匝道控制.建立了高速公路交通流动态模型,在此基础上,结合模糊逻辑理论设计了非线性反馈匝道控制器,根据密度误差和误差变化用模糊控制决定匝道调节率,模糊变量选用三角形隶属度函数,并制定了包含56条模糊规则的规则库,最后用MATLAB软件进行系统仿真.结果表明该控制器具有优越的动态和稳态性能,它能使高速公路主线交通流密度保持为设定的期望密度,该方法用在高速公路入口匝道控制中效果良好.  相似文献   

16.
Shunt active power filters have been widely used for power quality improvement. With the advancement in artificial intelligence techniques, the applications of fuzzy logic‐based control systems have increased manifolds. This paper proposes a reduced rule fuzzy logic controller (FLC) in the voltage control loop of a shunt active power filter (APF), which is approximating a conventional large rule FLC. The difference between the controlled outputs of two controllers is compensated by proposed compensating factors. The dynamic response and harmonic compensation performance of proposed 4‐rule approximated fuzzy logic controller (AFLC) is compared with 25‐rule FLC. A three‐phase shunt APF is used for harmonic and reactive power compensation. The proposed scheme is tested with randomly varying single and multiple non‐linear loads. The simulation results presented under transient and steady‐state conditions confirm that the proposed 4‐rule AFLC efficiently approximates the 25‐rule FLC. The proposed control methodology takes less computational time and computational memory as the numbers of rules are reduced significantly.  相似文献   

17.
Based on the concept of sliding-mode control (SMC), the paper designs fuzzy logic controls to achieve the prespecified trajectory tracking for an uncertain nonlinear system. The prespecified trajectory is composed of several nonisoclinal segments in the phase plane and is regarded as the piecewise sliding surface. First, let the uncertain system be approximated by a linguistic fuzzy rule base, then two fuzzy logic controllers are designed to achieve the hitting motion and preserve the system's state traveling on the prespecified trajectory. The main advantage of this control design is that the trial and error of the conventional fuzzy control design disappears. A practical example is given to illustrate the applicability of the algorithm  相似文献   

18.
Different from the dominant view of treating fuzzy reasoning as generalization of classical logical inference, in this paper fuzzy reasoning is treated as a control problem. A new fuzzy reasoning method is proposed that employs an explicit feedback mechanism to improve the robustness of fuzzy reasoning. The fuzzy rule base given a priori serves as a controlled object, and the fuzzy reasoning method serves as the corresponding controller. The fuzzy rule base and the fuzzy reasoning method constitute a control system that may be open loop or closed loop, depending on the underlying reasoning goals/constraints. The fuzzy rule base, the fuzzy reasoning method, and the corresponding reasoning goals/constraints define the three distinct ingredients of fuzzy reasoning. While various existing fuzzy reasoning methods are essentially a static mapping from the universe of single fuzzy premises to the universe of single fuzzy consequences, the new fuzzy reasoning method maps sequences of fuzzy premises to sequences of fuzzy consequences and is a function of the underlying reasoning goals/constraints. The Monte Carlo simulation shows that the new fuzzy reasoning method is much more robust than the optimal fuzzy reasoning method proposed in our previous work. The explicit feedback mechanism embedded in the fuzzy reasoning method does significantly improve the robustness of fuzzy reasoning, which is concerned with the effects of perturbations associated with given fuzzy rule bases and/or fuzzy premises on fuzzy consequences. The work presented in this paper sets a new starting point for various principles of feedback control and optimization to be applied in fuzzy reasoning or logical inference and to explore new forms of reasoning including robust reasoning and adaptive reasoning. It can be also expected that the new fuzzy reasoning method presented in this paper can be used for modeling and control of complex systems and for decision-making under complex environments.  相似文献   

19.
 One of the biggest challenges of any control paradigm is being able to handle large complex systems. A system may be called large-scale or complex, here, if its dimension (order) is so high and its model (if available) is nonlinear, interconnected with uncertain information flow such that classical techniques of control theory cannot easily handle the system. From a control theoretical point of view, fuzzy logic has been intermixed with all the important aspects of systems theory - modeling, identification, analysis, stability, synthesis, filtering, and estimation. However, the application of fuzzy control to large-scale complex systems is not a trivial task by any means. For such systems the size of the rule base in a typical fuzzy control architecture will be nearly infinite. In this paper an attempt is made to break some new ground on the applications of fuzzy control to complex systems. A new rule base reduction approach is suggested to manage large inference engines. Notions of rule hierarchy and sensor data fusion are introduced and combined to achieve system’s goals. The technique has been implemented on an SGS Thomson W.A.R.P. chip for an inverted pendulum with wine-balancing application.  相似文献   

20.
The objective of this work is to develop a state-of-charge (SOC) estimation system for the lead-acid battery, which is free from the time-dependent variation of the battery characteristics. In this system, the SOC is estimated by an improved Coulomb metric method, and the time-dependent variation is compensated by using a learning system. The learning system tunes the Coulomb metric method in such a way that the estimation process remains error free from the time-dependent variation. The proposed learning system uses the fuzzy logic, which is not used for estimation of SOC but perform as a component of learning system. The fuzzy logic is used as a soft computing device for a multi-variables function evolution. During learning process the system automatically generates a new fuzzy rule base, and replaces the old fuzzy rule base. Results of the simulations as well as the experiments on an 8-bit microcontroller are also included which indicate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号