首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper the topological derivative concept is applied in the context of compliance topology optimization of structures subject to design-dependent hydrostatic pressure loading under volume constraint. The topological derivative represents the first term of the asymptotic expansion of a given shape functional with respect to the small parameter which measures the size of singular domain perturbations, such as holes, inclusions, source-terms and cracks. In particular, the topological asymptotic expansion of the total potential energy associated with plane stress or plane strain linear elasticity, taking into account the nucleation of a circular inclusion with non-homogeneous transmission condition on its boundary, is rigorously developed. Physically, there is a hydrostatic pressure acting on the interface of the topological perturbation, allowing to naturally deal with loading-dependent structural topology optimization. The obtained result is used in a topology optimization algorithm based on the associated topological derivative together with a level-set domain representation method. Finally, some numerical examples are presented, showing the influence of the hydrostatic pressure on the topology of the structure.  相似文献   

2.
Flow machines are very important to industry, being widely used on various processes. Thus, performance improvements are relevant and can be achieved by using topology optimization methods. In particular, this work aims to develop a topological derivative formulation to design radial flow machine rotors by considering laminar flow. Based on the concept of traditional topology optimization approaches, in the adopted topological derivative formulation, solid or fluid material is distributed at each point of the domain. This is achieved by combining Navier–Stokes equations on a rotary referential with Darcy’s law equations. This strategy allows for working in a fixed computational domain, which leads to a topology design algorithm of remarkably simple computational implementation. In the optimization problem formulation, a multi-objective function is defined, aiming to minimize the energy dissipation, vorticity and power considering a volume constraint. The constrained optimization problem is rewritten in the form of an unconstrained optimization problem by using the Augmented Lagrangian formalism. The resulting multi-objective shape functional is then minimized with help of the topological derivative concept. In the context of this article, the topological derivative represents the exact sensitivity with respect to the nucleation of an inclusion within the design domain and the obtained analytical (closed) formula can be evaluated through a simple post processing of the solutions to the direct and adjoints problems. Both mentioned features allow for obtaining the optimized designs in few iterations by using a minimal number of user defined algorithm parameters. All equations and the derived continuous adjoint equations are solved through finite element method. As a result, two-dimensional designs of flow machine rotors are obtained by using this methodology. Their performance is analyzed by evaluating velocity and pressure distributions inside rotor.  相似文献   

3.
The concept of topological sensitivity derivative is introduced and applied to study the problem of optimal design of structures. It is assumed, that virtual topology variation is described by topological parameters. The topological derivative provides the gradients of objective functional and constraints with respect to these parameters. This derivative enables formulation of the conditions of topology transformation. In this paper formulas for the topological sensitivity derivative for bending plates are derived. Next, the topological derivative is used in the optimization process in order to formulate conditions of finite topology modifications and in order to localize positions of the modifications. In the case of plates they are related to introduction of holes and introduction of stiffeners. The theoretical considerations are illustrated by some numerical examples.  相似文献   

4.
The topological asymptotic analysis provides the sensitivity of a given shape functional with respect to an infinitesimal domain perturbation. Therefore, this sensitivity can be naturally used as a descent direction in a structural topology design problem. However, according to the literature concerning the topological derivative, only the classical approach based on flexibility minimization for a given amount of material, without control on the stress level supported by the structural device, has been considered. In this paper, therefore, we introduce a class of penalty functionals that mimic a pointwise constraint on the Von Mises stress field. The associated topological derivative is obtained for plane stress linear elasticity. Only the formal asymptotic expansion procedure is presented, but full justifications can be deduced from existing works. Then, a topology optimization algorithm based on these concepts is proposed, that allows for treating local stress criteria. Finally, this feature is shown through some numerical examples.  相似文献   

5.
The design of fluid devices, such as flow machines, mixers, separators, and valves, with the aim to improve performance is of high interest. One way to achieve it is by designing them through the topology optimization method. However, there is a specific large class of fluid flow problems called 2D swirl flow problems which presents an axisymmetric flow with (or without) flow rotation around the axisymmetric axis. Some devices which allow such simplification are hydrocyclones, some pumps and turbines, fluid separators, etc. Once solving a topology optimization problem for this class of problems using a 3D domain results in a quite high computational cost, the development and use of 2D swirl models is of high interest. Thus, the main objective of this work is to propose a topology optimization formulation for 2D swirl flow fluid problem to design these kinds of fluid devices. The objective is to minimize the relative energy dissipation considering the viscous and porous effects. The 2D swirl laminar fluid flow modelling is solved by using the finite element method. A traditional material model is adopted by considering nodal design variables. An interior point optimization (IPOPT) algorithm is applied to solve the optimization problem. Numerical examples are presented to illustrate the application of this model for various 2D swirl flow cases.  相似文献   

6.
In this work a new method for obstacles reconstruction from partial boundary measurements is proposed. For a given boundary excitation, we want to determine the quantity, locations and sizes of a number of holes embedded within a geometrical domain, from partial boundary measurements related to such an excitation. The resulting inverse problem is written in the form of an ill-posed and over-determined boundary value problem. The idea therefore is to rewrite it as an optimization problem where a shape functional measuring the misfit between the boundary measurement and the solution to an auxiliary boundary value problem is minimized with respect to a set of ball-shaped holes. The topological derivative concept is used for solving the associated topology optimization problem, leading to a second-order reconstruction algorithm. The resulting algorithm is non-iterative – and thus very robust with respect to noisy data – and also free of initial guess. Finally, some numerical results are presented in order to demonstrate the effectiveness of the proposed reconstruction algorithm.  相似文献   

7.
We present a Matlab implementation of topology optimization for fluid flow problems in the educational computer code PolyTop (Talischi et al. 2012b). The underlying formulation is the well-established porosity approach of Borrvall and Petersson (2003), wherein a dissipative term is introduced to impede the flow in the solid (non-fluid) regions. Polygonal finite elements are used to obtain a stable low-order discretization of the governing Stokes equations for incompressible viscous flow. As a result, the same mesh represents the design field as well as the velocity and pressure fields that characterize its response. Owing to the modular structure of PolyTop, incorporating new physics, in this case modeling fluid flow, involves changes that are limited mainly to the analysis routine. We provide several numerical examples to illustrate the capabilities and use of the code. To illustrate the modularity of the present approach, we extend the implementation to accommodate alternative formulations and cost functions. These include topology optimization formulations where both viscosity and inverse permeability are functions of the design; and flow control where the velocity at a certain location in the domain is maximized in a prescribed direction.  相似文献   

8.
The topological derivative provides the sensitivity of a given shape functional with respect to an infinitesimal (non smooth) domain perturbation at an arbitrary point of the domain. Classically, this derivative comes from the second term of the topological asymptotic expansion, dealing only with infinitesimal perturbations. However, for practical applications, we need to insert perturbations of finite size. Therefore, we consider one more term in the expansion which is defined as the second order topological derivative. In order to present these ideas, in this work we calculate first as well as second order topological derivatives for the total potential energy associated to the Laplace’s equation, when the domain is perturbed with a hole. Furthermore, we also study the effects of different boundary conditions on the hole: Neumann and Dirichlet (both homogeneous). In the Neumann’s case, the second order topological derivative depends explicitly on higher-order gradients of the state solution and also implicitly on the point where the hole is nucleated through the solution of an auxiliary problem. On the other hand, in the Dirichlet’s case, the first order topological derivative depends explicitly on the state solution as well as implicitly through the solution of an auxiliary problem, and the second order topological derivative depends only explicitly on the solution associated to the original problem. Finally, we present two simple examples showing the influence of both terms in the second order topological asymptotic expansion for each case of boundary condition on the hole.  相似文献   

9.

Whereas topology optimization has achieved immense success, it involves an intrinsic difficulty. That is, optimized structures obtained by topology optimization strongly depend on the settings of the objective and constraint functions, i.e., the formulation. Nevertheless, the appropriate formulation is not usually obvious when considering structural design problems. Although trial-and-error to determine appropriate formulations are implicitly performed in several studies on topology optimization, it is important to explicitly support the process of trial-and-error. Therefore, in this study, we propose a new framework for topology optimization to determine appropriate formulations. The basic idea of this framework is incorporating knowledge discovery in databases (KDD) and topology optimization. Thus, we construct a database by collecting various and numerous material distributions that are obtained by solving various structural design problems with topology optimization, and find useful knowledge with respect to appropriate formulations from the database on the basis of KDD. An issue must be resolved when realizing the above idea, namely the material distribution in the design domain of a data record must be converted to conform to the design domain of the target design problem wherein an appropriate formulation should be determined. For this purpose, we also propose a material distribution-converting method termed as design domain mapping (DDM). Several numerical examples are used to demonstrate that the proposed framework including DDM successfully and explicitly supports the process of trial-and-error to determine the appropriate formulation.

  相似文献   

10.
Compliant mechanisms are mechanical devices composed by one single piece that transforms simple inputs into complex movements. This kind of multi-flexible structure can be manufactured at a very small scale. Therefore, the spectrum of applications of such microtools has become broader in recent years including microsurgery, nanotechnology processing, among others. In this paper, we deal with topology design of compliant mechanisms under von Mises stress constraints. The topology optimization problem is addressed with an efficient approach based on the topological derivative concept and a level-set domain representation method. The resulting topology optimization algorithm is remarkably efficient and of simple computational implementation. Finally, some numerical experiments are presented, showing that the proposed approach naturally avoids the undesirable flexible joints (hinges) by keeping the stress level under control.  相似文献   

11.
The aim of the present work is to apply the topological sensitivity analysis (TSA) to large-deformation elasticity based on the total Lagrangian formulation. The TSA results in a scalar function, denominated topological derivative, that gives for each point of the domain the sensitivity of a given cost function when a small hole is created. An approximated expression for the topological derivative is obtained by numerical asymptotic analysis. Numerical results of the presented approach are considered for elastic plane problems.  相似文献   

12.
Topology structural optimization problems have been usually stated in terms of a maximum stiffness (minimum compliance) approach. The objective of this type of approach is to distribute a given amount of material in a certain domain, so that the stiffness of the resulting structure is maximized (that is, the compliance, or energy of deformation, is minimized) for a given load case. Thus, the material mass is restricted to a predefined percentage of the maximum possible mass, while no stress or displacement constraints are taken into account. This paper presents a different strategy to deal with topology optimization: a minimum weight with stress constraints Finite Element formulation for the topology optimization of continuum structures. We propose two different approaches in order to take into account stress constraints in the optimization formulation. The local approach of the stress constraints imposes stress constraints at predefined points of the domain (i.e. at the central point of each element). On the contrary, the global approach only imposes one global constraint that gathers the effect of all the local constraints by means of a certain so-called aggregation function. Finally, some application examples are solved with both formulations in order to compare the obtained solutions.  相似文献   

13.
This paper presents a piecewise constant level set method for the topology optimization of steady Navier-Stokes flow. Combining piecewise constant level set functions and artificial friction force, the optimization problem is formulated and analyzed based on a design variable. The topology sensitivities are computed by the adjoint method based on Lagrangian multipliers. In the optimization procedure, the piecewise constant level set function is updated by a new descent method, without the needing to solve the Hamilton-Jacobi equation. To achieve optimization, the piecewise constant level set method does not track the boundaries between the different materials but instead through the regional division, which can easily create small holes without topological derivatives. Furthermore, we make some attempts to avoid updating the Lagrangian multipliers and to deal with the constraints easily. The algorithm is very simple to implement, and it is possible to obtain the optimal solution by iterating a few steps. Several numerical examples for both two- and three-dimensional problems are provided, to demonstrate the validity and efficiency of the proposed method.  相似文献   

14.
We consider the optimal design of two- (2D) and three-dimensional (3D) flow domains using the lattice Boltzmann method (LBM) as an approximation of Navier-Stokes (NS) flows. The problem is solved by a topology optimization approach varying the effective porosity of a fictitious material. The boundaries of the flow domain are represented by potentially discontinuous material distributions. NS flows are traditionally approximated by finite element and finite volume methods. These schemes, while well established as high-fidelity simulation tools using body-fitted meshes, are effected in their accuracy and robustness when regular meshes with zero-velocity constraints along the surface and in the interior of obstacles are used, as is common in topology optimization. Therefore, we study the potential of the LBM for approximating low Mach number incompressible viscous flows for topology optimization. In the LBM the geometry of flow domains is defined in a discontinuous manner, similar to the approach used in material-based topology optimization. In addition, this non-traditional discretization method features parallel scalability and allows for high-resolution, regular fluid meshes. In this paper, we show how the variation of the porosity can be used in conjunction with the LBM for the optimal design of fluid domains, making the LBM an interesting alternative to NS solvers for topology optimization problems. The potential of our topology optimization approach will be illustrated by 2D and 3D numerical examples.  相似文献   

15.
In the article we propose the enhancement of the topology optimization method, which uses an iterative positioning, orientation and hierarchical shape optimization of subsequently introduced elastic inhomogeneities. The inserted elastic inhomogeneities could be more or less compliant than the elastic medium of the structural element being optimized. One extreme case of the inhomogeneity is the cavity of zero stiffness (“bubble”), while the other limit corresponds to the absolutely rigid inhomogeneity (“grain”). This extension of the topology method requires the generalization of topological derivatives. The topological derivative is an instrument for solving topology optimization problems. Namely, the topological derivative quantifies the sensitivity of a problem when the domain under consideration is perturbed by changing its topological genus. In this article we represent the generalized topological derivatives exploiting the Eshelby approach of effective inhomogeneity. For this purpose we study sensitivity of the optimization functional to the placement of infinitesimally small elliptical inhomogeneity. The sensitivity to the infinitesimal translation of inclusion is quantified by the characteristic function. The infinitesimally small inhomogeneity must be inserted at the point, where the characteristic function attains its extreme value. Next, we examine the sensitivity of the Lagrangian to orientation of ellipse and determine its optimal orientation. Finally, we express the optimal eccentricity of ellipse as the function of averaged principal strains in inhomogeneous medium. The compliance functional plays the role of optimization criterion. Using adjoint variables technique of variational calculus, the results could be extended for arbitrary integral functionals.  相似文献   

16.
A topological derivative method for topology optimization   总被引:4,自引:2,他引:2  
We propose a fictitious domain method for topology optimization in which a level set of the topological derivative field for the cost function identifies the boundary of the optimal design. We describe a fixed-point iteration scheme that implements this optimality criterion subject to a volumetric resource constraint. A smooth and consistent projection of the region bounded by the level set onto the fictitious analysis domain simplifies the response analysis and enhances the convergence of the optimization algorithm. Moreover, the projection supports the reintroduction of solid material in void regions, a critical requirement for robust topology optimization. We present several numerical examples that demonstrate compliance minimization of fixed-volume, linearly elastic structures.  相似文献   

17.
The paper deals with topology design of thermomechanical actuators. The goal of shape optimization is to maximize the output displacement in a given direction on the boundary of the elastic body, which is submitted to a thermal excitation that induces a dilatation/contraction of the thermomechanical device. The optimal structure is identified by an elastic material distribution, while a very compliant (weak) material is used to mimic voids. The mathematical model of an actuator takes the form of a semi-coupled system of partial differential equations. The boundary value problem includes two components, the Navier equation for linear elasticity coupled with the Poisson equation for steady-state heat conduction. The mechanical coupling is the thermal stress induced by the temperature field. Given the integral shape functional, we evaluate its topological derivative with respect to the nucleation of a small circular inclusion with the thermomechanical properties governed by two contrast parameters. The obtained topological derivative is employed to generate a steepest descent direction within the level set numerical procedure of topology optimization in a fixed geometrical domain. Finally, several finite element-based examples for the topology design of thermomechanical actuators are presented.  相似文献   

18.
The so-called topological derivative concept has been seen as a powerful framework to obtain the optimal topology for several engineering problems. This derivative characterizes the sensitivity of the problem when a small hole is created at each point of the domain. However, the greatest limitation of this methodology is that when a hole is created it is impossible to build a homeomorphic map between the domains in study (because they have not the same topology). Therefore, some specific mathematical framework should be developed in order to obtain the derivatives. This work proposes an alternative way to compute the topological derivative based on the shape sensitivity analysis concepts. The main feature of this methodology is that all the mathematical procedure already developed in the context of shape sensitivity analysis may be used in the calculus of the topological derivative. This idea leads to a more simple and constructive formulation than the ones found in the literature. Further, to point out the straightforward use of the proposed methodology, it is applied for solving some design problems in steady-state heat conduction.  相似文献   

19.
In this paper, a unified strategy is developed to simultaneously insert inclusions or holes of regular shape as well as redistribute the material to effect optimal topologies of solids. We demonstrate the unified optimal design strategy through three possible choices of design variables: (1) purely geometrical, (2) purely material, and (3) geometrical-material. We couple the geometrical approach with the topological derivative of the objective function and a condition derived for optimally inserting an infinitesimal ellipsoidal heterogeneity (hole or inclusion) into the structure. The approximations of the geometry, material and behavioral fields are isoparametric (or “isogeometric”) and are composed consistent with the Hierarchical Partition of Unity Field Compositions (HPFC) theory (Rayasam et al., Int J Numer Methods Eng 72(12):1452–1489, 2007). Specifically, analogous to the constructive solid geometry procedure of CAD, the complex material as well as the behavioral field is modeled hierarchically through a series of pair-wise compositions of primitive fields defined on the primitive geometrical domains. The geometrical, material and behavioral approximations are made using Non-Uniform Rational B-Splines (NURBS) basis functions. Thus, the proposed approach seamlessly unifies the explicit representation of boundary shapes with the implicit representations of boundaries arising out of material redistribution, and is termed ISOCOMP, or isoparametric compositions for topology optimization. The methodology is demonstrated first on a set of example problems that increase in complexity of design variable choice culminating in simultaneous optimization of hole location, hole shape and material distribution within the domain. This is followed by a detailed case study involving topology optimization of a bicycle “dropout.”  相似文献   

20.
In the present work, a highly efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization is proposed. In this approach, high-resolution optimization results can be obtained with a smaller number of design variables and a relatively low degree of freedoms (DOFs). This is achieved by taking the advantage that the topology optimization model and the finite element analysis model are totally decoupled in the MMC-based problem formulation. A coarse mesh is used for structural response analysis and a design domain partitioning strategy is introduced to preserve the topological complexity of the optimized structures. Numerical examples are then provided so as to demonstrate that with the use of the proposed approach, computational efforts can be saved substantially for large-scale topology optimization problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号