首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物质高压液化制生物油研究进展   总被引:2,自引:0,他引:2  
以生物质为原料进行高压液化制备生物油是目前生物质能领域研究的一个热点。纤维素在水中的降解是复杂的竞争和连串反应机理;在180℃以上,半纤维素就很容易水解,而且不管是酸还是碱都能催化半纤维素的水解反应;在水热条件下木质素会发生分解,生成多种苯酚、甲氧基苯酚等,这些产物可进一步被水解成甲氧基化合物。影响生物质液化产率及生物油组成的主要因素是温度、生物质类型和溶剂种类;次要因素包括停留时间、催化剂、还原性气体和供氢溶剂、加热速率、生物质颗粒大小、反应压力等。纤维素类生物质通过高压液化可以生产生物油,生物油经物理精制及化学加工可以制取车用燃料、生物气及化工产品等。生物油有轻油和重油之分,都是通过对生物质液化产物的分离精制而得到的。目前用来分析生物油的主要方法包括GC-MS(色-质联用)、EA(元素分析)、FTIR(傅里叶变换红外光谱)、HPLC(高效液相色谱)、NMR(核磁共振)、TOC(总有机碳测定)等。人们对生物质高压液化研究已经进行多年,并建立了几套工业试验示范装置。不过因为操作条件太苛刻,到目前为止还没有建立商业化装置。  相似文献   

2.
Biorefineries: Current activities and future developments   总被引:1,自引:0,他引:1  
This paper reviews the current refuel valorization facilities as well as the future importance of biorefineries. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. Biorefineries combine the necessary technologies of the biorenewable raw materials with those of chemical intermediates and final products. Char production by pyrolysis, bio-oil production by pyrolysis, gaseous fuels from biomass, Fischer–Tropsch liquids from biomass, hydrothermal liquefaction of biomass, supercritical liquefaction, and biochemical processes of biomass are studied and concluded in this review. Upgraded bio-oil from biomass pyrolysis can be used in vehicle engines as fuel.  相似文献   

3.
The liquefaction mechanisms of the algal biomass to bio-oil were investigated by using Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy, respectively. It was found that NaOH was a satisfactory catalyst and contributed to helping the liquefaction of algal biomass. The bio-oil from algal biomass was composed of many compounds, including carbohydrates, alcohol, hydroxybenzene, carboxylic acid, alkene, ester, and others. The mechanism of hydrothermal catalytic liquefaction was discussed. It was found that, comparing with the husk bio-fuel, the algal bio-oil as a promising alternative fuel was more close to the traditional diesel fuel in physicochemical properties. The novel research outcomes contribute to improving the yield of bio-oil from microalgae, reducing the cost of the bio-oil and accelerating the commercial application of the algal bio-oil in the near future.  相似文献   

4.
Bio-oil production and upgrading research: A review   总被引:1,自引:0,他引:1  
Biomass can be utilized to produce bio-oil, a promising alternative energy source for the limited crude oil. There are mainly two processes involved in the conversion of biomass to bio-oil: flash pyrolysis and hydrothermal liquefaction. The cost of bio-oil production from biomass is relatively high based on current technologies, and the main challenges are the low yield and poor bio-oil quality. Considerable research efforts have been made to improve the bio-oil production from biomass. Scientific and technical developments towards improving bio-oil yield and quality to date are reviewed, with an emphasis on bio-oil upgrading research. Furthermore, the article covers some major issues that associated with bio-oil from biomass, which includes bio-oil basics (e.g., characteristics, chemistry), application, environmental and economic assessment. It also points out barriers to achieving improvements in the future.  相似文献   

5.
The heavy palm oil industry in Malaysia has generated various oil palm biomass residues. These residues can be converted into liquids (bio-oil) for replacing fossil-based fuels and chemicals. Studies on the conversion of these residues to bio-oil via pyrolysis technology are widely available in the literature. However, thermochemical liquefaction of oil palm biomass for bio-oil production is rarely studied and reported. In this study, palm kernel shell (PKS) was hydrothermally liquefied under subcritical and supercritical conditions to produce bio-oil. Effects of reaction temperature, pressure and biomass-to-water ratio on the characteristics of bio-oil were investigated. The bio-oils were analyzed for their chemical compositions (by GC–MS and FT-IR) and higher heating values (HHV). It was found that phenolic compounds were the main constituents of bio-oils derived from PKS for all reaction conditions investigated. Based on the chemical composition of the bio-oil, a general reaction pathway of hydrothermal liquefaction of PKS was postulated. The HHV of the bio-oils ranged from 10.5 to 16.1 MJ/kg, which were comparable to the findings reported in the literature.  相似文献   

6.
利用微藻热化学液化制备生物油的研究进展   总被引:1,自引:0,他引:1  
微藻是制备生物质液体燃料的良好材料,利用微藻热化学液化制备生物油在环保和能源供应方向都具有非常重要的意义。目前国内外研究者主要采用快速热解液化和直接液化两种热化学转化技术进行以微藻为原料制备生物油的研究。快速热解生产过程在常压下进行,工艺简单、成本低、反应迅速、燃料油收率高、装置容易大型化,是目前最具开发潜力的生物质液化技术之一。但快速热解需要对原料进行干燥和粉碎等预处理,微藻含水率极高,会消耗大量的能量,使快速热解技术在以微藻为原料制备生物油方面受到限制。直接液化技术反应温度较快速热解低,原料无需烘干和粉碎等高耗能预处理过程,且能产生更优质的生物油,将会是微藻热化学液化制备生物油发展的主流方向,极具工业化前景。国内外研究者还尝试利用超临界液化、共液化、热化学催化液化、微波裂解液化等多种新型液化工艺进行微藻热化学液化制备生物油的实验研究。今后的主要研究方向应是将热化学液化原理研究、生产工艺开发、反应器研发、反应条件优化、产品精制等有机地结合起来,进行深入研究。同时应努力节约成本、降低能耗。  相似文献   

7.
以猪体为原料,以高位热值、C元素回收率、N元素残留率作为生物油质量指标,采用响应面法研究反应温度(220~300 ℃)、反应时间(40~80 min)、固含量(10%~30%)对猪体水热转化生物油产率与质量的影响。研究结果表明:反应条件均会影响水热反应的进行且温度影响最显著,分别在不同反应条件下得到单一指标最优的生物油;生物油的最大产率为76.94%(278 ℃、64 min、29%固含量),最大HHV值为38.63 MJ/kg(290 ℃、47 min、30%固含量),最大C元素回收率为93.16%(260 ℃、60 min、10%固含量),最低N元素残留率为15.52%(220 ℃、40 min、12%固含量)。生物油的元素分析结果表明水热液化可有效降低生物油中N、O元素含量,提高生物油品质。傅里叶变换红外光谱分析与热重分析结果表明,生物油的化学成分复杂且以分子量较大、碳链较长的有机物为主。  相似文献   

8.
This work reports bio-oil production by hydrothermal liquefaction of blackcurrant pomace (Ribes nigrum L.), a fruit residue obtained after berry pressing. The bio-oil has a higher heating value of 35.9 MJ kg−1 and low ash content, which makes it suitable for energy applications. We report the influence of process parameters on yields and carbon distribution between products: temperature (563–608 K), holding time (0–240 min), mass fraction of dry biomass in the slurry (0.05–0.29), and initial pH (3.1–12.8) by adding sodium hydroxide (NaOH). Depending on the experiments, the bio-oil accounts for at least 24% mass fraction of the initial dry biomass, while char yields ranges from 24 to 40%. A temperature of 583 K enhances the bio-oil yield, up to 30%, while holding time does not have a significant influence on the results. Increasing biomass concentrations decreases bio-oil yields from 29% to 24%. Adding sodium hydroxide decreases the char yield from 35% at pH = 3.1 (without NaOH) to 24% at pH = 12.8. It also increases the bio-oil yield and carbon transfer to the aqueous phase. Thermogravimetric analysis shows that a 43% mass fraction of the bio-oil boils in the medium naphtha petroleum fraction range. The bio-oil is highly acidic and unsaturated, and its dynamic viscosity is high (1.7 Pa s at 298 K), underlining the need for further upgrading before any use for fuel applications.  相似文献   

9.
Research on biomass conversion has been gaining a lot of interest as biomass is renewable and sustainable in nature. Products from biomass can be obtained by different methods amongst which thermo-chemical route has a very high potential. Biomass is generally available in a localised manner in varying quantities and qualities throughout the year and hence, region specific technologies have to be developed considering the end user requirement. Pyrolysis is a very versatile technique with the above considerations. The process parameters can be tweaked to necessity to produce more bio-oil or bio-char. Thermogravimetric analysis is essential for understanding the decomposition behaviour of the feedstock before the lab scale pyrolysis is carried out. Pyrolysis using several regional feedstocks has been carried out under nitrogen and hydrogen atmosphere and different biomass feedstocks were also liquefied using sub/supercritical solvents. This review aims to provide a comparison of the results obtained using various processes. This helps in the decentralised processing of biomass (dry biomass using pyrolysis and wet biomass by hydrothermal liquefaction) to produce bio-crude which can be upgraded to produce fuels/chemicals/petrochemical feedstocks in an environmental friendly manner.  相似文献   

10.
《能源学会志》2020,93(1):235-271
The use of renewable carbon sources as a substitute for fossil resources is an extensively essential and fascinating research area for addressing the current issues related to climate and future fuel requirements. The utilization of lignocellulosic biomasses as a source for renewable fuel/chemicals/mesoporous biochar derivative is gaining considerable attention due to the neutral carbon cycle. The cellulose and hemicellulose are highly utilized components of biomass, and on the other hand, lignin is a plentiful, under-utilized component of the lignocellulosic biomass in 2G ethanol and paper industry. Significant researchers have contributed towards lignin valorization, with a central goal of the production and upgradation of phenolic, unstable, acidic and oxygen-containing bio-oil to valuable chemicals or fuel grade hydrocarbons. This review is aimed to present the lignin valorization potential from pretreatment of biomass as an initial step to the final process, i.e., lignin bio-oil upgradation with mechanistic pathways. The review offers the source, structure, composition of various lignocellulosic biomasses, followed by a discussion of various pre-treatment techniques for biomass depolymerization. Different thermochemical approaches for bio-oil production from dry and wet biomasses are highlighted with emphasis on pyrolysis and liquefaction. The physical, chemical properties of lignin bio-oil and different upgradation methods for bio-oil as well as its model compounds are thoroughly discussed. It also addresses the related activity, selectivity, stability of numerous catalysts with reaction pathways and kinetics in a broad manner. The challenges and future research opportunities of lignin valorization are discussed in an attempt to place lignin as a feedstock for the generation of valuable chemical and fuel grade hydrocarbons.  相似文献   

11.
Despite remarkable progress in catalytic fast pyrolysis, bio-oil production is far from commercialization because of multi-scale challenges, and major constraints lie with catalysts. This review aims to introduce major constraints of acid catalysts and simultaneously to find out possible solutions for the production of fuel-grade bio-oil in biomass catalytic fast pyrolysis. The catalytic activities of several materials which act as acid catalysts and the impacts of Bronsted and Lewis acid site on the formation of aromatic hydrocarbons are discussed. Considering the complexity of catalytic fast pyrolysis of biomass with acid catalysts, in-depth understandings of cracking, deoxygenation, carbon-carbon coupling, and aromatization for both in-situ and ex-situ configurations are emphasized. The limitation of diffusion along with coke formation, active site poisoning, thermal/hydrothermal deactivation, sintering, and low aromatics in bio-oil are process complexities with solid acid catalysts. The economic viability of large-scale bio-oil production demands progress in catalyst modification or/and developing new catalysts. The potential of different catalyst modification strategies for an adequate amount of acid sites and pore size confinement is discussed. By critically evaluating the challenges and potential of catalyst modification techniques, multi-functional catalysts may be an effective approach for selective conversion of biomass to bio-oil and chemicals through catalytic fast pyrolysis. This review offers a scientific reference for the research and development of catalytic fast pyrolysis of biomass.  相似文献   

12.
Energy from biomass, bioenergy, is a promising source to replace fossil fuels in the future, as it is abundant, clean, and carbon dioxide neutral. Thermochemical liquefaction of biomass is widely investigated as a promising method to produce one kind of liquid biofuel, namely bio-oil. This review presents the recent research progress in the liquefaction of typical biomass from a new perspective. Particularly, this article summarizes five aspects of related work: first, the effect of solvent type on the liquefaction behaviors of biomass; second, the effect of biomass type on the liquefaction behaviors of biomass; third, the liquefaction of biomass in sub-/super-critical ethanol; fourth, the liquefaction of biomass in organic solvent–water mixed solvents; fifth, the liquefaction of sewage sludge. Meanwhile, the research advance in the migration and transformation behavior of heavy metals during the liquefaction of sewage sludge was also summarized in this review. This review can offer an important reference for the study of biomass liquefaction.  相似文献   

13.
Bio-oils produced by direct thermal liquefaction often contain heavy components that hinder their utilization as a liquefaction medium. This paper reports a new approach to fractionate the liquefaction bio-oil into a light and a heavy fraction based on solvent extraction and temperature-swing regeneration. This approach is based on hot extraction (T ∼ 70 °C) of the light fraction of the oil with a suitable extraction solvent followed by cold (T ∼ 25 °C) de-mixing of the light fraction and the extraction solvent. In this paper, we (i) illustrate the selection of the extraction solvent and define the solvent properties required, (ii) demonstrate the potential of multistage extraction/regeneration for the bio-oil produced by direct thermal liquefaction, (iii) extend the concept to fractionate a petroleum crude oil, (iv) discuss the theoretical basis of the fractionation using polymer solution theory and, finally, (v) show a low energy requirement of the extraction process by means of process simulation, i.e., an equivalent of ∼1% of the biomass intake.  相似文献   

14.
Since the energy crises of the 1970s, many countries have become interest in biomass as a fuel source to expand the development of domestic and renewable energy sources and reduce the environmental impacts of energy production. Biomass is used to meet a variety of energy needs, including generating electricity, heating homes, fueling vehicles and providing process heat for industrial facilities. The methods available for energy production from biomass can be divided into two main categories: thermo-chemical and biological conversion routes. There are several thermo-chemical routes for biomass-based energy production, such as direct combustion, liquefaction, pyrolysis, supercritical water extraction, gasification, air–steam gasification and so on. The pyrolysis is thermal degradation of biomass by heat in the absence of oxygen, which results in the production of charcoal (solid), bio-oil (liquid), and fuel gas products. Pyrolysis liquid is referred to in the literature by terms such as pyrolysis oil, bio-oil, bio-crude oil, bio-fuel oil, wood liquid, wood oil, liquid smoke, wood distillates, pyroligneous tar, and pyroligneous acid. Bio-oil can be used as a fuel in boilers, diesel engines or gas turbines for heat and electricity generation.  相似文献   

15.
生物质水热技术研究现状及发展   总被引:1,自引:0,他引:1  
生物质水热转化技术作为一种新的生物质利用技术,在亚临界或超临界水下,将生物质直接转化为高品位气态、液态和固态产物。该技术具有原料适应性广、低成本和高转化率等特点,具有很好的应用前景。文章综述了近年来生物质水热技术研究的最新进展,分别对水热液化、水热气化和水热碳化3方面内容进行分析,对目前存在的问题提出了建设性的意见。  相似文献   

16.
17.
石油炼厂加工纤维素/木质纤维素生物质原料的前景   总被引:1,自引:1,他引:0  
生物质热解与生物油改质、生物质气化与合成气费-托转化工艺是正在研究开发的第二代生物燃料技术,前者利用快速热解工艺对生物质进行热解或热加氢改质生成热解油;后者用生物质直接合成或先转化为生物油后再生成合成气,合成气经改质和转化生产费-托合成烃。许多石油公司都在以纤维素/木质纤维素为原料,研究开发在石油炼厂内对生物质原料进行后续加工和应用的相关技术。在石油炼厂中引入生物质原料,其挑战是要找到源自非食用生物质或生物质废弃物的原料,而且这些原料应易于运输并易于在炼厂中进行处理,同时应尽可能使用现有的工艺和装置。虽然石油炼厂加工生物质原料尚存在一些问题,但近来开发势头十分强劲。从长远角度来看,任何能为炼厂提供原料,生命周期分析证明能减少CO2排放,并在经济上可行的技术均会在生物燃料开发竞争中成为赢家。  相似文献   

18.
介绍了生物质热加工液化技术中的各种热裂解液化和高压液化工艺,包括流化床、涡流烧蚀反应器、真空快速裂解反应器以及高压釜、半连续固定床等装置的工作原理和生产工艺,分析它们各自的优点和存在的问题,着重讨论了各种工艺提高生物原油产率的措施以及精制生物原油可替代柴油作为车用轻质燃油的方法,指出降低生物原油的生产成本,扩大生产规模是热加工液化的发展方向。  相似文献   

19.
生物质液化技术可将低品位的固体生物质完全转化成高品位的液体燃料或化学品,是生物质能高效利用的主要方式之一。按照机理,液化技术可以分为热化学法、生化法、酯化法和化学合成法(间接液化),热化学法液化又分为快速热解技术和高压液化(直接液化)技术。生物质热化学法液化已成为国内外生物质液化的研究开发重点和热点,快速热解液化技术和高压液化技术是最具产业化前景的生物质能技术,生化法液化技术也是生物质能的研究热点。化学合成法液化技术并不适用于生物质液化,而利用生物柴油进一步生产生物航空煤油是得不偿失的,不仅成本高、资源利用率低,而且全生命周期碳排放增加,还不符合未来生物航煤的发展趋势。生物质含水量的高低是影响生物质液化过程中能耗、效率、污染指数和经济性指标等的关键因素,应根据含水量合理选择生物质液化技术。快速热解液化技术适用于低含水农林废弃物,高压液化和生化法液化技术适用于高含水生物质,酯化法液化技术适用于不可食用油脂,而各种液化技术均不适用于城市生活垃圾的处理,建议将其用作燃气型气化原料。  相似文献   

20.
生物质热解液化技术经济分析   总被引:8,自引:0,他引:8  
我国生物质资源十分丰富,但主要以各类农业残余废弃物为主,其特点是能量密度低、分布不集中,如果采用热解液化技术在产地将其先分散转化成生物油,然后再对生物油进行应用或再加工,则就避免了大规模收集和长距离运输生物质所带来的巨大困难。研究分析表明:热解液化设备的规模以每小时可处理2t农业残余废弃物较为适宜,且这种技术在我国具有良好的市场应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号