首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
高硅钢具有优异的软磁性能,是中高频电机铁心的理想材料。采用双辊连铸-热轧-温轧-退火工艺,制备了厚度为 0.30 mm的6.5 %Si薄板。利用X射线衍射仪和磁性测量,研究了不同温轧工艺对6.5 %Si薄板轧制及退火织构、最终磁性能的影响。结果表明,温轧温度越低,越有利于温轧板心部形成{001}〈0vw〉织构,600 ℃和500 ℃轧制的试样经退火后主要是γ织构,而400 ℃轧制的试样退火后则同时含有γ织构及强度较高的η织构,其对应的磁感值高;同样的温轧温度,二次轧制的温轧板中并未形成{001}〈0vw〉织构,且试样经退火后也没有形成η织构,其磁感比一次轧制的试样低。因此,低温一次轧制,有利于试样在退火过程中形成有利的η织构而提高磁感。  相似文献   

2.
采用电子背散射衍射技术(EBSD)对热压烧结铍锭在温轧过程中的显微组织和织构演变规律进行了研究。结果表明,温轧过程中的主要变形机制为滑移;随着轧制变形量的增加,晶粒逐渐拉长细化;在压下量为37.9%时,轧制铍板中的基面织构达到最大值,此后继续增加压下量,铍材内织构、晶粒尺寸及显微硬度均不再发生明显变化;铍材轧制中或轧制后都需要进行退火,退火工艺对铍板的基面织构有一定的弱化作用,可改善板材的内部组织结构,提高轧制性能。  相似文献   

3.
分别利用双辊连铸—温轧—退火和双辊连铸—热轧—温轧—退火工艺制备了厚度为0.50mm的6.5%硅钢薄带。利用光学显微镜、X射线衍射仪和磁性测量研究了热轧、温轧和退火工艺对组织、织构和磁性的影响。结果表明:在温轧之前进行一定程度的热轧,可减小温轧变形量,退火后可获得更加满意的{001}uvw再结晶织构和更加均匀的再结晶组织,故与直接温轧工艺相比,温轧之前进行一定程度的热轧可使磁感提高,而铁损降低。  相似文献   

4.
以无稀土与含质量分数为0.03%的Y的6.5%(质量分数)Si高硅钢为研究对象,经过热轧、常化、温轧及退火工艺制备出0.5 mm高硅钢薄板,采用EBSD、SEM和EDS测试技术,研究了稀土Y对高硅钢热、温轧组织织构演变的影响。结果表明,热轧板中以{001}〈110〉和{110}〈001〉织构为主,常化板织构类型遗传了热轧板,添加稀土Y削弱了热轧、常化板中整体织构强度。含Y高硅钢较无稀土高硅钢温轧剪切带增多,位错密度增加,α织构减弱且γ织构增强。随着退火温度升高,温轧板以{001}〈140〉为主的λ织构和{114}〈481〉为主的α~*织构强度不断增强。添加稀土Y削弱了相同退火温度下温轧板的λ织构与α~*织构的强度,然而η织构却有所增强,这与稀土Y促进剪切带形核有关。添加质量分数为0.03%的Y具有细化晶粒的作用,细小弥散的稀土Y氧化物阻碍晶界迁移是导致高硅钢温轧板再结晶晶粒细化的重要原因。  相似文献   

5.
研究了超纯21%Cr铁素体不锈钢精轧温度对织构演变规律和成形性能的影响。将粗轧板坯切块并在900~750℃范围内进行精轧,随后经相同的热轧退火、酸洗、冷轧及退火处理,系统研究了试样的宏观织构、显微织构和成形性能的变化规律。结果表明:精轧温度对铁素体不锈钢的织构演变有重要影响,降低热轧精轧温度有利于增加热轧退火板中{111}再结晶织构组分;冷轧及冷轧退火板的织构分布具有明显的遗传性,热轧板中较高的{111}再结晶织构组分,促进了冷轧退火板中{111}再结晶织构的生成,从而提高了铁素体不锈钢的成形性能。  相似文献   

6.
摘要:以无稀土与含质量分数为0.03%的Y的6.5%(质量分数)Si高硅钢为研究对象,经过热轧、常化、温轧及退火工艺制备出0.5mm高硅钢薄板,采用EBSD、SEM和EDS测试技术,研究了稀土Y对高硅钢热、温轧组织织构演变的影响。结果表明,热轧板中以{001}〈110〉和{110}〈001〉织构为主,常化板织构类型遗传了热轧板,添加稀土Y削弱了热轧、常化板中整体织构强度。含Y高硅钢较无稀土高硅钢温轧剪切带增多,位错密度增加,α织构减弱且γ织构增强。随着退火温度升高,温轧板以{001}〈140〉为主的λ织构和{114}〈481〉为主的α*织构强度不断增强。添加稀土Y削弱了相同退火温度下温轧板的λ织构与α*织构的强度,然而η织构却有所增强,这与稀土Y促进剪切带形核有关。添加质量分数为0.03%的Y具有细化晶粒的作用,细小弥散的稀土Y氧化物阻碍晶界迁移是导致高硅钢温轧板再结晶晶粒细化的重要原因。  相似文献   

7.
通过对1.5% Si的无取向电工钢冷轧板进行连续退火试验,研究不同连续退火工艺对电工钢成品的组织、织构及磁性能的影响.结果表明:随着连续退火温度的提高,退火态的晶粒尺寸增大;不利织构组分{111}面织构变化不大,旋转立方织构{100}<110>和高斯织构{110}<001>明显增强;最终成品的磁性能随着连续退火温度的提高,铁损P1.5/50明显降低,磁感B50略有提高.  相似文献   

8.
曾春  程朝阳  王项龙  吴章汉 《钢铁》2022,57(1):126-132
 为了研究Fe-6.5%Si钢极薄带的制备工艺,并获得良好的产品磁性能,以薄带铸轧试验机制备的6.5%Si钢铸带为原料,分别采用一次温轧法、二次温轧法和基于应变诱导无序(DID)原理的高硅钢室温冷轧3种工艺制备出厚度为0.1 mm的Fe-6.5%Si钢。分析结果显示,一次温轧法退火后以高强度γ织构为主,由于压下率达到90%,形变储能高,晶粒尺寸最大,铁损最低,同时磁感也最低;二次温轧的退火板除了γ织构外,还有较强的η织构,故其磁感值高于一次温轧法,该方法得到的6.5%Si钢薄带综合磁性能最优,但生产成本高,效率低;基于DID原理,对6.5%Si钢热轧板在温度为300~450 ℃、压下率为45%~65%的条件下进行温轧,实现了6.5%Si钢软化,随后可将6.5%Si钢室温冷轧至0.1 mm,此时温轧板和冷轧板内部有序相消失,基体变成无序态;室温冷轧板退火后晶粒更细,铁损略有升高。此外,室温冷轧可促进{111}<112>形变晶粒在冷轧剪切带中形核形成有利织构,因此磁感值得到更大提升;采用DID原理进行室温冷轧,效率较高,后续可通过优化退火工艺使其进一步降低铁损,该方法为薄带铸轧工艺批量生产磁性能优异的6.5%Si钢极薄带提供技术参考。  相似文献   

9.
研究了退火温度对3.1 %Si无取向硅钢组织和磁性能的影响规律。结果表明:退火温度从940 ℃提高至1 000 ℃,平均晶粒尺寸由98 μm增加到145 μm,铁损P1.5/50从2.576W/kg降低至2.408 W/kg。随着退火温度的升高,γ不利织构组分强度逐渐降低,{111}〈112〉织构组分强度降低约16 %,磁感B50逐渐升高,磁性能水平提高。  相似文献   

10.
为研究稀土钇(Y)对冷轧高硅钢薄板磁性能的影响规律,以3种不同Y含量(无稀土,含0.012%Y,含0.030%Y)的6.5%Si高硅钢为研究对象,采用了热轧、温轧、冷轧及退火工艺制备出了0.2mm厚高硅钢成品板。利用金相显微镜(OM)、扫描电镜(SEM)及电子背散射衍射(EBSD)技术分析了稀土Y对其组织、织构和磁性能的影响。研究结果表明,随着Y含量的增加,高硅钢冷轧板成品退火后平均晶粒尺寸逐渐降低,分别为194μm、125μm和84μm;对磁性能有利的{100}面织构不断减弱,η(〈100〉//RD)织构强度先增后减,而对磁性能不利的γ(〈111〉//ND)织构先减弱后增强。当Y的质量分数为0.012%时,尽管在50~1 000Hz频率下的铁损值相比无稀土高硅钢略有增加,但磁感B50最高,达到了1.647T,归因于η织构的增强与γ织构的减弱。  相似文献   

11.
研究了终轧温度对铌、钛双稳定化超纯Cr17铁素体不锈钢的组织演变、织构演变及成形性能的影响。研究结果表明,降低终轧温度能有效细化、均匀化热轧及退火组织。降低终轧温度能增强冷轧退火板的γ纤维再结晶织构、减轻偏离{111}121组分的程度。降低终轧温度是提高r值、降低Δr值、改善冷轧退火板成形性能的有效手段。  相似文献   

12.
基于常规流程制备无取向硅钢,研究了卷取温度对于0.9 %Si 无取向硅钢组织、织构和磁性能的影响。研究表明,650 ℃卷取后组织仍为细小的变形组织,最终退火板晶粒尺寸较小且不均匀。700 ℃和750 ℃卷取后,组织为尺寸较大且均匀的再结晶组织,最终退火板组织也较为均匀。卷取后退火板不利的γ fiber织构明显减弱,有利的λ fiber织构增强。随着卷取温度的升高,磁感显著提升,与未卷取时相比,750 ℃卷取后退火板平均磁感B50提高了0.013 T。  相似文献   

13.
基于常规流程制备无取向硅钢,研究了卷取温度对于0.9%Si无取向硅钢组织、织构和磁性能的影响。研究表明,650℃卷取后组织仍为细小的变形组织,最终退火板晶粒尺寸较小且不均匀。700℃和750℃卷取后,组织为尺寸较大且均匀的再结晶组织,最终退火板组织也较为均匀。卷取后退火板不利的γ-fiber织构明显减弱,有利的λ-fiber织构增强。随着卷取温度的升高,磁感显著提升,与未卷取时相比,750℃卷取后退火板平均磁感B50提高了0.013T。  相似文献   

14.
高飞  于德健  刘振宇  王国栋 《钢铁》2011,46(6):68-73
 以铌稳定化的Cr17铁素体不锈钢为试验材料,系统研究了精轧温度,即高温精轧和低温精轧,对组织、织构和成形性能的影响。2种不同工艺的热轧板经相同的热带退火、冷轧及退火处理后,分别采用金相显微镜及X射线衍射技术观察2种工艺条件下的组织和织构演变。研究结果表明:与高温精轧相比,低温精轧有利于得到细小及均匀的冷轧退火组织;有利于冷轧退火板形成较强的γ纤维再结晶织构,并消除γ纤维再结晶织构的偏转。因此,低温精轧能够显著提高冷轧退火板的成形性能。  相似文献   

15.
对含有单一柱状晶的409L铁素体不锈钢连铸坯,采用不同终轧温度的热轧工艺,由常规热轧转变为温轧,再经过相同后续工艺;较低终轧温度的成品获得了较高rm值和较低△r值.终轧温度的降低使组织演变发生变化:热轧和冷轧组织中晶界和晶内剪切带增多,变形组织被细化、硬化,尤其是中心层附近的粗大带状晶粒;两者的增多又增加了退火过程中的再结晶形核点,使退火组织细化、均匀化.终轧温度的降低也使织构演变发生变化:热轧及其退火织构由{001~114}(110)向高ρ1和Φ值区域移动;冷轧织构峰值由{001}(110)转移至{335}(110);冷轧退火织构的γ组分增多,峰值由{334}(483)转移至{111}(112),而{001~114}(110)和(0°<Φ<35°,ρ1≈25°)组分减少.  相似文献   

16.
无取向硅钢薄带的开发   总被引:3,自引:0,他引:3  
以取向硅钢板为原料,采用异步轧制和织构控制技术在含硫化物气体的热处理条件下生产具有(100)织构的无取向硅钢薄带.研究了硅钢薄带厚度、退火温度对磁性能的影响,以及硫化物气氛对硅钢薄带再结晶织构的影响.结果表明,硅钢薄带磁性能对于厚度存在一个最佳值;在相同轧制条件下,退火温度为1 000 ℃,保温1 h的硅钢薄带磁性能较好;退火气氛中含硫化物有利于形成(100)面织构,从而制取高性能的无取向硅钢薄带.  相似文献   

17.
退火温度对无取向硅钢组织结构的影响   总被引:1,自引:0,他引:1  
本文研究了退火温度对无取向硅钢晶粒大小、晶体织构的影响。随着退火温度的升高,平均晶粒尺寸增加。在低温段。随着退火温度的升高,对磁性能不利的织构组分减弱。在高温段,织构随退火温度变化正好与低温段相反。退火温度通过影响晶粒尺寸和晶体织构对磁性能有明显的影响。  相似文献   

18.
采用电子背散射衍射技术对高硅钢近柱状晶初始组织直接热轧、温轧、冷轧和退火组织及织构演变进行分析,并测定相应退火板的磁性能.该实验条件下组织与织构演变规律体现了表层剪切细小组织和中心层粗大组织的竞争关系,其中中心层组织与原始立方取向相关或表现为α线取向.柱状晶的影响在最终退火组织中仍存在,少量立方取向区域可遗传到最终退火板中,虽然没有大量出现,仍有效削弱了{111}织构.形变退火过程中与原始立方取向线有关的晶粒尺寸普遍较大,有利于磁性.样品最终的磁感应强度低于文献报导的强{120}〈001〉或{100}〈021〉织构样品,但高于普通无取向高硅钢,且轧向和横向磁感应强度值差异小,所以柱状晶组织有利于无取向高硅钢的制备.   相似文献   

19.
采用单轴拉伸及TEM、XRD等实验方法分析研究了0.1C-5Mn中锰钢温轧后逆相变退火处理对其组织和性能的影响规律。结果表明:实验钢温轧后退火处理可获得等轴状与一定量板条状共存的奥氏体+铁素体的复合组织形貌。随着退火时间延长,逆转变奥氏体的含量增多、尺寸增大,这使得奥氏体的稳定性逐渐降低,抗拉强度逐渐提高,而屈服强度、伸长率及强塑积则逐渐降低;在退火时间为5min时,可获得高达40GPa·%的强塑积。与冷轧退火样相比,温轧退火样具有更为优异的塑性和强塑积,强塑积可提高20%以上。因此,温轧工艺具有简化中锰钢生产工艺流程、并进一步改善其力学性能的良好潜力。  相似文献   

20.
赵晓丽  张永健  惠卫军  王存宇  董瀚 《钢铁》2019,54(11):69-79
 尽管中锰钢的强塑性等力学性能得到了较大幅度提升,但要大规模地应用于汽车部件制造,仍需解决材料在制造和服役过程中面临的氢脆等系列难题,在此背景下,利用电化学充氢、氢热分析仪、慢应变速率拉伸试验机及扫描电镜等研究了两种不同状态(热轧和温轧)0.1C 5Mn中锰钢在650 ℃保温30 min(两相区退火处理)后的氢脆敏感性。结果表明,热轧和温轧退火样的微观组织分别为板条状及等轴+板条状的铁素体与奥氏体的复相组织。尽管温轧退火样的强度比热轧退火样提高了约150 MPa,伸长率降低了约5%,但两者的强塑积均可达到约33 GPa·%。两种试验材料充氢时吸附的氢绝大部分为对应低温逸出峰的可扩散性氢,温轧退火试验材料的氢脆敏感性低于热轧退火钢。充氢热轧退火样断口起裂处的断裂机制为穿晶断裂+沿原奥氏体晶界的脆性沿晶断裂;温轧退火样的起裂处则为空心韧窝+包括奥氏体(变形后转变为马氏体)晶粒的实心韧窝,后者实际上为沿着奥氏体和铁素体界面起裂的一种脆性沿晶断裂。造成两种试验材料氢脆敏感性不同的原因主要是其微观组织及其所引起的氢致断裂方式的差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号