首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
In this paper, a new integral inequality is presented. By combining this integral inequality with adaptive approach, new design methods can be developed to synthesize some adaptive robust control schemes for a large class of uncertain nonlinear systems and to deal with well the unknown nonlinearities appearing in uncertain nonlinear control dynamical systems. As an application of the presented integral inequality to control theory, the robust stabilization problem is considered for a class of uncertain strict‐feedback nonlinear systems with both time‐delay and unknown dead‐zone input nonlinearities. It is shown that there are two main merits in the design method based on the integral inequality presented in this paper. The first one is that one need not estimate and know the unknown nonlinearities to synthesize some stabilizing control schemes. The second one is that the resulting feedback control schemes have rather simple structure.  相似文献   

2.
This paper investigates a predefined performance control problem for adaptive tracking of uncertain nonlinear time-delay systems in nonstrict-feedback form. Nonstrict-feedback nonlinearities, time-varying delays and external disturbances are assumed to be unknown. Based on the exponential decaying design functions denoting the preassigned bounds of transient and steady-state tracking errors, some variable separation lemmas are derived to design an approximation-based robust adaptive control scheme in the presence of nonstrict-feedback time-delayed nonlinearities. The proposed control system guarantees that a tracking error remains within a predesigned bound for all t ≥ 0 and converges to a preselected neighbourhood of the origin. Compared with the existing results in the literature, the main contribution of this paper is to provide a solution on the guaranteed performance control in the presence of unknown nonstrict-feedback nonlinearities related to all delayed state variables. Simulation results illustrate the effectiveness of the proposed methodology.  相似文献   

3.
This paper deals with the robust adaptive control of a class of nonlinear systems in the presence of parametric uncertainties and dominant uncertain nonlinearities. The proposed controller utilizes the robust adaptive control to guarantee uniform boundedness and convergence of tracking errors. In addition, an adaptive fuzzy logic system is used as a universal approximator to reduce the model uncertainties coming from uncertain nonlinearities and to improve tracking performance. The approach does not require the matching condition imposed on control systems by using the backstepping design procedure, and provides boundedness of tracking errors under poor parameter adaptation. The method can be applied to a class of single-input single-output (SISO) nonlinear systems, transformable to a parametric-strict-feedback form  相似文献   

4.
This paper focuses mainly on decentralized intelligent tracking control for a class of high‐order stochastic nonlinear systems with unknown strong interconnected nonlinearity in the drift and diffusion terms. For the control of uncertain high‐order nonlinear systems, the approximation capability of RBF neural networks is utilized to deal with the difficulties caused by completely unknown system dynamics and stochastic disturbances, and only one adaptive parameter is constructed to overcome the overparameterization problem. Then, to address the problem from high‐order strong interconnected nonlinearities in the drift and diffusion terms with full states of the overall system, by using the monotonically increasing property of the bounding functions, the variable separation technique is achieved. Lastly, based on the Lyapunov stability theory, a decentralized adaptive neural control method is proposed to reduce the number of online adaptive learning parameters. It is shown that, for bounded initial conditions, the designed controller can ensure the semiglobally uniformly ultimate boundedness of the solution of the closed‐loop system and make the tracking errors eventually converge to a small neighborhood around the origin. Two simulation examples including a practical example are used to further illustrate the effectiveness of the design method.  相似文献   

5.
含有非线性不确定参数的电液系统滑模自适应控制   总被引:3,自引:1,他引:2  
针对含有非线性不确定参数的电液控制系统, 提出了一种滑模自适应控制方法. 该控制方法主要是为了解决由于初始控制容积的不确定性而引起的, 非线性不确定参数自适应律设计的难题. 其主要特点为, 通过定义一个新型的特Lyapunov 函数, 进而构建系统的自适应控制器及参数自适应律, 并结合滑模控制方法及一种简单的鲁棒设计方法, 给出整个电液系统的滑模自适应控制器, 及所有不确定参数的自适应律. 试验结果表明, 采用该控制方法能够取得良好的性能, 尤其可以补偿非线性不确定参数对系统的影响.  相似文献   

6.
Adaptive tracking of nonlinear systems with non-symmetric dead-zone input   总被引:4,自引:0,他引:4  
Quite successfully adaptive control strategies have been applied to uncertain dynamical systems subject to dead-zone nonlinearities. However, adaptive tracking of systems with non-symmetric dead-zone characteristics has not been fully discussed with minimal knowledge of the dead-zone parameters. It is shown that the controlled system preceded by a non-symmetric dead-zone input can be represented as an uncertain nonlinear system subject to a linear input with time-varying input coefficient. To cope with this problem, a new adaptive compensation algorithm is employed without constructing the dead-zone inverse. The proposed adaptive scheme requires only the information of bounds of the dead-zone slopes and treats the time-varying input coefficient as a system uncertainty. The new control scheme ensures bounded-error trajectory tracking and assures the boundedness of all the signals in the adaptive closed loop. By appropriate selections of the controller parameters, we show that the smoothness of the controller does not affect the accuracy of trajectory tracking control. A numerical example is included to show the effectiveness of the theoretical results.  相似文献   

7.
In this paper, a discontinuous projection‐based adaptive robust control (ARC) scheme is constructed for a class of nonlinear systems in an extended semi‐strict feedback form by incorporating a nonlinear observer and a dynamic normalization signal. The form allows for parametric uncertainties, uncertain nonlinearities, and dynamic uncertainties. The unmeasured states associated with the dynamic uncertainties are assumed to enter the system equations in an affine fashion. A novel nonlinear observer is first constructed to estimate the unmeasured states for a less conservative design. Estimation errors of dynamic uncertainties, as well as other model uncertainties, are dealt with effectively via certain robust feedback control terms for a guaranteed robust performance. In contrast with existing conservative robust adaptive control schemes, the proposed ARC method makes full use of the available structural information on the unmeasured state dynamics and the prior knowledge on the bounds of parameter variations for high performance. The resulting ARC controller achieves a prescribed output tracking transient performance and final tracking accuracy in the sense that the upper bound on the absolute value of the output tracking error over entire time‐history is given and related to certain controller design parameters in a known form. Furthermore, in the absence of uncertain nonlinearities, asymptotic output tracking is also achieved. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, an adaptive fuzzy output feedback control approach is developed for a class of SISO nonlinear uncertain systems with unmeasured states and unknown virtual control coefficients. The fuzzy logic systems are used to model the uncertain nonlinear systems. The MT-filters and the state observer are designed to estimate the unmeasured states. Using backstepping design principle and combining the Nussbaum gain functions, an adaptive fuzzy output feedback control scheme is developed. It is proved that the proposed adaptive fuzzy control approach can guarantee all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error converges to a small neighborhood of origin. A simulation is included to illustrate the effectiveness of the proposed approach.  相似文献   

9.
A novel fuzzy terminal sliding mode control (FTSMC) scheme is proposed for position tracking of a class of second-order nonlinear uncertain system. In the proposed scheme, we integrate input-output linearization technique to cancel the nonlinearities. By using a function-augmented sliding hyperplane, it is guaranteed that the output tracking error converges to zero in finite time which can be set arbitrarily. The proposed scheme eliminates reaching phase problem, so that the closed-loop system always shows invariance property to parameter uncertainties. Fuzzy logic systems are used to approximate the unknown system functions and switch item. Robust adaptive law is proposed to reduce approximation errors between true nonlinear functions and fuzzy systems, thus chattering phenomenon can be eliminated. Stability of the proposed control scheme is proved and the scheme is applied to an inverted pendulum system. Simulation studies are provided to confirm performance and effectiveness of the proposed control approach.  相似文献   

10.
A novel fuzzy terminal sliding mode control (FTSMC) scheme is proposed for position tracking of a class of second-order nonlinear uncertain system. In the proposed scheme, we integrate input-output linearization technique to cancel the nonlinearities. By using a function-augmented sliding hyperplane, it is guaranteed that the output tracking error converges to zero in finite time which can be set arbitrarily. The proposed scheme eliminates reaching phase problem, so that the closed-loop system always shows invariance property to parameter uncertainties. Fuzzy logic systems are used to approximate the unknown system functions and switch item. Robust adaptive law is proposed to reduce approximation errors between true nonlinear functions and fuzzy systems, thus chattering phenomenon can be eliminated. Stability of the proposed control scheme is proved and the scheme is applied to an inverted pendulum system. Simulation studies are provided to confirm performance and effectiveness of the proposed control approach.  相似文献   

11.
The output tracking control problem is considered for a class of uncertain strict-feedback nonlinear systems with time-varying delays. In the paper, the time-varying delays are assumed to be any non-negative continuous and bounded functions, and it is not necessary for their derivatives to be less than one. It is also assumed that the upper bounds of nonlinear delayed state perturbations and external disturbances are unknown. On the basis of backstepping algorithm, a novel design method is proposed by which some simple adaptive robust output tracking control schemes are synthesised. The proposed design method can avoid the repeated differentiation problem which appears in using the conventional backstepping algorithm, and need not know all the nonlinear upper bound functions of uncertainties, which are repeatedly employed at each step of the backstepping algorithm. In particular, it is not necessary to know any information on the time-varying delays to construct our simple output tracking control schemes. It is also shown that the tracking error can converge uniformly exponentially towards a neighbourhood of the origin. Finally, a numerical example and its simulations are provided to demonstrate the design procedure of the simple method proposed in the paper.  相似文献   

12.
基于DSC后推法的非线性系统的鲁棒自适应NN控制   总被引:1,自引:0,他引:1  
李铁山  邹早建  罗伟林 《自动化学报》2008,34(11):1424-1430
针对一类具有不确定系统函数和方向未知的不确定增益函数的非线性系统, 提出了一种鲁棒自适应神经网络控制算法. 本算法采用RBF神经网络(Radial based function neural network, RBF NN)逼近模型不确定性, 外界干扰和建模误差采用非线性阻尼项进行补偿, 将动态面控制(Dynamic surface control, DSC)与后推方法结合, 消除了反推法的计算膨胀问题, 降低了控制器的复杂性; 尤其是采用Nussbaum函数处理系统中方向未知的不确定虚拟控制增益函数, 不仅可以避免可能存在的控制器奇异值问题, 而且还能使得整个系统的在线学习参数显著减少, 与DSC方法优点结合, 使得控制算法的计算量大为减少, 便于计算机实现. 稳定性分析证明了所得闭环系统是半全局一致最终有界(Semi-global uniformly ultimately bounded, SGUUB)的, 并且跟踪误差可以收敛到原点的一个较小邻域. 最后, 计算机仿真结果表明了本文所提出控制器的有效性.  相似文献   

13.
提出一类不需要线性PD反馈的混合鲁棒/自适应控制策略,用于不确定性机器人的轨迹 跟踪.其控制结构由一个补偿参数不确定性的自适应控制器和补偿非参数不确定性的鲁棒控 制器构成. 其主要特点是基于一类饱和型函数,提出了一类新颖的鲁棒控制器和非线性滑动 变量的设计方法.基于Lyapunov方法的理论分析和计算机仿真,均保证设计的控制策略能够消 除系统所有的不确定性影响,并达到全局的渐近稳定.  相似文献   

14.
本文针对一类具有未知非线性函数和未知虚拟系数非线性函数的二阶非线性系统 ,提出了一种基于神经网络的稳定自适应输出跟踪控制方法 .用李雅普诺夫稳定性分析方法证明了本文的神经网络自适应控制器能够使受控系统稳定 ,并使输出跟踪误差随时间趋于无穷而收敛到零 .仿真算例证明了该算法的有效性  相似文献   

15.
杨强  刘玉生 《控制与决策》2015,30(6):993-999
基于自适应非线性阻尼,提出一种鲁棒自适应输出反馈控制方法。该方法适用于带有未建模动态、未知非线性、有界扰动、未知非线性参数和不确定控制系数的多输入多输出非线性系统。理论证明,在一定的假设条件下,该方法能保证闭环系统所有动态信号有界;不论有多少不确定非线性参数、多高阶的非线性系统,只需要一个自适应控制参数和观察参数;而且通过选择适当的控制器和观测器参数,能使控制误差和估计误差达到任意小。仿真结果表明了所提出方法的有效性。  相似文献   

16.
A dissipative-based adaptive neural control scheme was developed for a class of nonlinear uncertain systems with unknown nonlinearities that might not be linearly parameterized. The major advantage of the present work was to relax the requirement of matching condition, i.e., the unknown nonlinearities appear on the same equation as the control input in a state-space representation, which was required in most of the available neural network controllers. By synthesizing a state-feedback neural controller to make the closed-loop system dissipative with respect to a quadratic supply rate, the developed control scheme guarantees that the L2-gain of controlled system was less than or equal to a prescribed level. And then, it is shown that the output tracking error is uniformly ultimate bounded. The design scheme is illustrated using a numerical simulation.  相似文献   

17.
非线性系统的神经网络鲁棒自适应跟踪控制   总被引:1,自引:0,他引:1  
针对一类具有未知非线性函数和未知虚拟系数非线性函数的二阶非线性系统,提出了一种神经网络鲁棒自适应输出跟踪控制方法.用李雅普诺夫稳定性分析方法证明了本文的神经网络自适应控制器能够使受控系统内的所有信号均为有界.选择的神经网络权值调整规律可以防止自适应控制中的参数漂移.  相似文献   

18.
In this paper, a novel direct adaptive fuzzy control approach is presented for uncertain nonlinear systems in the presence of input saturation. Fuzzy logic systems are directly used to tackle unknown nonlinear functions, and the adaptive fuzzy tracking controller is constructed by using the backstepping recursive design techniques. To overcome the problem of input saturation, a new auxiliary design system and Nussbaum gain functions are incorporated into the control scheme, respectively. It is proved that the proposed control approach can guarantee that all the signals of the resulting closed-loop system are semi-globally uniformly ultimately bounded (SGUUB), and the tracking error converges to a small neighborhood of the origin. A simulation example is included to illustrate the effectiveness of the proposed approach. Two key advantages of the scheme are that (i) the direct adaptive fuzzy control method is proposed for uncertain nonlinear system with input saturation by using Nussbaum function technique and (ii) The number of the online adaptive learning parameters is reduced.  相似文献   

19.
In this paper, the problem of output tracking for a class of uncertain nonlinear systems is considered. First, neural networks are employed to cope with uncertain nonlinear functions, based on which state estimation is constructed. Then, an output feedback control system is designed by using dynamic surface control (DSC). To guarantee the L-infinity tracking performance, an initialization technique is presented. The main feature of the scheme is that explosion of complex- ity problem in backstepping control is avoided, and there is no need to update the unknown parameters including control gains as well as neural networks weights, the adaptive law with one update parameter is necessary only at the first design step. It is proved that all signals of the closed-loop system are semiglobally uniformly ultimately bounded and the L-infinity performance of system tracking error can be guaranteed. Simulation results demonstrate the effectiveness of the proposed scheme.  相似文献   

20.
研究了一类控制系数未知的高阶不确定非线性系统的自适应镇定控制设计. 尽管该问题已经得到解决,但是所设计的控制器是非线性反馈形式,较为复杂. 与现有文献不同,本文通过综合运用增加幂积分技术和切换自适应控制方法,给出了该控制问题的更为简单且易于实现的新型线性反馈控制器,使得系统状态有界且最终趋于零. 值得指出的是,与切换自适应控制文献相比,本文所研究的非线性系统具有更严重的不确定/未知性和更强的非线性,这主要体现在未知的系统控制系数和更高的系统幂次中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号