首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
SBBR工艺中亚硝酸型同步硝化反硝化的过程控制   总被引:3,自引:0,他引:3  
采用序批式生物膜反应器(SBBR),在生物膜培养驯化初期实现了亚硝酸盐硝化,通过调节曝气量控制系统内的溶解氧浓度,实现了SBBR工艺中的亚硝酸型同步硝化反硝化生物脱氮,出水中亚硝酸盐累积率(NO2^--N/NO2^--N)达到90%左右,TN低于8mg·L^-1,去除率为71.4%~85.6%。为了实现SBBR工艺中亚硝酸型同步硝化反硝化的过程控制,考察了亚硝酸型同步硝化反硝化生物脱氮过程中DO、pH和ORP的变化规律。试验结果表明,DO、pH和ORP的变化规律与反应器内COD的降解和“三氮”的转化有良好的相关性,并在不同温度条件下的亚硝酸型同步硝化反硝化硝化过程中具有良好的重现性,可以依据DO、pH和ORP在变化曲线上的特征点作为SBBR法亚硝酸型同步硝化反硝化的过程控制参数。  相似文献   

2.
常温下SBBR反应器中短程同步硝化反硝化的实现   总被引:8,自引:3,他引:5  
采用自主设计的序批式生物膜反应器(SBBR)处理城市污水,在常温(25~27℃),pH值7.2~7.6条件下,通过恒定低曝气量实现了稳定的短程同步硝化反硝化。试验还考察了碳氮比对SBBR系统短程同步硝化反硝化的影响。结果表明:在SBBR中处理城市污水实现短程同步硝化反硝化较为适合的碳氮质量比在5~8之间,亚硝酸盐氮积累率在85%以上,TN去除率可以达到80%以上。  相似文献   

3.
序批式生物膜反应器的同步硝化反硝化研究   总被引:5,自引:0,他引:5  
序批式生物膜反应器(SBBR)在好氧条件下能创造缺氧微环境.出现同步硝化反硝化现象.为在城市污水处理中实现持久稳定的同步硝化反硝化过程,研究了DO、C/N、温度和pH对SBBR同步硝化反硝化的影响.结果表明:DO是影响同步硝化反硝化重要因素,温度和pH对硝化菌和反硝化菌的生物活性具有明显的抑制作用,在中性和略偏碱性时可较好地实现同步硝化反硝化.  相似文献   

4.
以自配葡萄糖水为原水,采用A/O-超滤膜组合工艺进行短程反硝化脱氮,测定了不同溶解氧(DO)浓度下NO~-_2-N的积累率,考察了碳氮比(C/N)、DO浓度对短程反硝化脱氮的影响。结果表明,在C/N为3、DO浓度为0.8~1.0 mg·L~(-1)的工况下运行,脱氮效果最佳,出水TN含量达到《城镇污水处理厂污染物排放标准》的一级A标准。与传统全程硝化反硝化工艺相比,短程反硝化具有脱氮效率高、碳源投加少、能耗低、污泥量少等优点。  相似文献   

5.
异养硝化-好氧反硝化菌异养硝化性能的影响因素   总被引:1,自引:0,他引:1       下载免费PDF全文
在异养硝化-好氧反硝化菌H1良好的脱氮效果基础上,研究了在不同溶解氧浓度、废水成分和金属离子存在条件下时,H1的代谢途径及其异养硝化性能的变化。研究表明,溶解氧浓度在4.7 mg/L时,H1脱氮途径最佳;在NH4+模拟废水中,NH4+会通过NH4+—→NH2OH—→N2O—→N2的途径被快速去除;在NH4+和NO2?混合模拟废水中,没有显示出H1优先进行反硝化的现象,NH4+-N的降解是短程的硝化反硝化过程;在NH4+和NO3?混合模拟废水中,NO3?会诱导羟胺氧化酶产生NO2?-N,使得NH4+-N经过反硝化途径的亚硝酸盐水平被去除;在NH4+模拟废水中,1 mmol/L的Cu2+和Fe2+对异养硝化过程具有显著地激活作用。  相似文献   

6.
利用自制的一体式缺氧/好氧(A/O)复合式生物反应器(HBR),对高浓度氨氮废水进行了脱氮研究.结果表明,当进水COD浓度在950~1100 mg·L-1、氨氮浓度增加到150 mg·L-1时系统COD、氨氮去除率开始下降;在好氧区内检测到大量的NO-2-N积累,表明HBR的脱氮作用部分是通过短程硝化-反硝化途径实现的.且复合式生物反应器填料内部存在多种多样的微环境类型以及缺氧/好氧内循环,造成反应器缺氧、好氧区都发生了同步硝化-反硝化反应.  相似文献   

7.
短程硝化反硝化是指将硝化过程控制在亚硝化阶段,随后在缺氧条件下进行反硝化的生物脱氮过程。以亚硝酸盐为电子受体的短程硝化反硝化,其关键是如何实现亚硝酸盐的积累。本文主要介绍了以亚硝酸盐为电子受体的短程硝化反硝化的机理,以及影响亚硝酸盐积累的多种因素,包括C/N、 FA (游离氨)、 DO、 pH等,探讨了短程硝化反硝化实现的主要工艺的途径。  相似文献   

8.
短程硝化反硝化是指将硝化过程控制在亚硝化阶段,随后在缺氧条件下进行反硝化的生物脱氮过程。以亚硝酸盐为电子受体的短程硝化反硝化,其关键是如何实现亚硝酸盐的积累。本文主要介绍了以亚硝酸盐为电子受体的短程硝化反硝化的机理,以及影响亚硝酸盐积累的多种因素,包括C/N、FA(游离氨)、DO、pH等,探讨了短程硝化反硝化实现的主要工艺的途径。  相似文献   

9.
采用A/O-MBR工艺对填埋场垃圾渗滤液进行了短程硝化反硝化脱氮研究。实验结果表明:系统驯化后稳定运行,COD去除率达到80%以上,NH4+-N、TN的平均去除率分别达到99.2%、92.2%;OⅠ与OⅡ池中NO2--N平均积累率分别达到91.7%、95.6%,表明系统主要的脱氮方式为短程硝化反硝化;过高或过低的DO都会影响NO2--N积累,硝化过程中的最佳DO为0.7~0.9 mg/L。PCR技术分析表明,A池中的优势菌种是反硝化细菌,占有率为70%;OⅡ池中的优势菌种是AOB,占有率为67%。  相似文献   

10.
有机碳源和DO对短程硝化的影响   总被引:1,自引:0,他引:1  
在SBR反应器中控制温度为(30±1)℃,pH为7.5~8.5,DO质量浓度为0.6~1.8mg·L-1,MLSS质量浓度稳定在5 000 mg·L-1左右,实现了短程硝化反硝化,并在C/N为1/1、1/2、1/4和DO质量浓度为0.3~O.4、0.4~0.6、0.6~1.6、1.6~2.0 mg·L-1的情况下,对亚硝酸氮累积的效果进行对比试验.结果表明,氨氮的去除率随着C/N的增加而降低,C/N=1/4时氨氮去除率达到98.3%,亚硝态氮的累积率达到了99.95%,DO质量浓度为0.6~1.6mg·L-1时最适合于同步硝化好氧反硝化脱氮.出水氨氮质量浓度为0.57mg·L-1,亚硝态盐氮质量浓度为125.78mg·L-1,硝酸盐氮质量浓度为O.26mg·L-1.  相似文献   

11.
采用序批式活性污泥法,通过控制溶解氧浓度开发出处理高氮豆制品废水的新工艺.实验结果显示,当曝气阶段反应器内溶解氧浓度保持在0.5 mg•L-1左右时,曝气过程中NO-2-N/NO-x-N的比率始终维持在93%以上,并且曝气结束时,有大约87.6%的氨氮是通过同步硝化反硝化途径去除的.因此,控制反应器内溶解氧浓度在0.5 mg•L-1左右时,在一个反应器内同时实现了亚硝酸型硝化反硝化和同步硝化反硝化.经过理论计算和机理分析,在此溶解氧下,亚硝酸菌的比增殖速率近似为硝酸菌的2.22~2.43倍,并且低溶解氧容易在活性污泥颗粒内形成进行反硝化作用的缺氧区.因此,在常温下,只要采用溶解氧传感器控制SBR反应器内溶解氧浓度在0.5 mg•L-1左右,就可以实现稳定的亚硝酸型同步硝化反硝化生物脱氮工艺.  相似文献   

12.
以实际高氮晚期渗滤液为研究对象,应用缺氧/厌氧UASB-A/O组合工艺重点研究有机物和氮的去除特性,同时考察了A/O系统内短程硝化实现途径及稳定方法。试验结果表明,该生化系统可实现有机物和氮的同步、深度去除。在原液COD平均为6537 mg·L-1,NH+4-N为2021 mg·L-1的条件下,系统最终出水分别为300 mg·L-1和15.6 mg·L-1,去除率分别为95.4%和99.2%。UASB反应器的平均COD负荷为6.5 kg COD·m-3·d-1,去除速率为5.3 kg COD·m-3·d-1。在单一UASB反应器内,发生了缺氧反硝化和厌氧产甲烷的双重生化反应,UASB反应器内获得了几乎100%的反硝化率。通过高游离氨(FA)和游离亚硝酸(FNA)的协同作用,使A/O反应器实现并维持了稳定的短程硝化,通过99%以上的亚硝化率实现高效的氨氮去除。  相似文献   

13.
为了提高生物脱氮效率,采用序批式生物反应器(SBR)处理模拟废水。在pH=7.0—8.5、温度10—15℃、溶解氧(DO)为3—5 mg/L、污泥浓度(MLSS)为(3 500±200)mg/L、ρ(NH4+-N)为50—70 mg/L条件下,分别考察蔗糖、醋酸钠和乙醇作为碳源对SBR工艺同步硝化反硝化(SND)脱氮效果和胞外聚合物(EPS)的影响。结果表明,蔗糖作为碳源时,当进水COD为370 mg/L时,COD去除率达到86%,SND率为88.3%,ρ(EPS)为659 mg/L;当醋酸钠作为碳源时,COD去除率达83.9%,SND率为68.8%,ρ(EPS)为742 mg/L;当乙醇作为碳源时,COD去除率仅为72.8%,SND率为58%,ρ(EPS)为736 mg/L。与醋酸钠和乙醇相比,蔗糖更适合作为低温下SBR工艺同步硝化反硝化的碳源。  相似文献   

14.
通过对短程硝化反硝化工艺的研究,开发了好氧/厌氧/好氧/缺氧(O1/A1/O2/A2)生物脱氮新工艺并用于焦化废水的处理。考察了NH4+-N、COD、TN对反应器运行效果影响。结果表明,当进水COD平均为3 012.9 mg/L,NH4+-N、TN、挥发酚、总氰平均质量浓度分别为590.5、608.4、361.8、34.5 mg/L;出水COD平均为81.7 mg/L,出水NH4+-N、TN、挥发酚、总氰的平均质量浓度分别为0.1、9.9、0.1、0.1 mg/L,出水指标达到国家污水综合排放一级标准,A/O工艺处理这种焦化废水TN偏高,而用O1/A1/O2/A2工艺可以解决这一问题,实现了TN脱除。考察了温度、DO、pH对短程硝化影响。结果表明,在DO质量浓度为1.0~1.5 mg/L、温度在30~35℃、pH 7.5~8.0,系统能够进行稳定短程硝化反硝化。  相似文献   

15.
常温低氨氮污水生物滤池CANON工艺的实现   总被引:3,自引:0,他引:3       下载免费PDF全文
王俊安  李冬  张杰  李占  陶晓晓 《化工学报》2010,61(6):1528-1533
基于厌氧氨氧化反应的生物自养脱氮是目前污水处理中最为经济的脱氮途径。采用装有火山岩活性生物陶粒滤料的反应器,在常温(8~25℃)条件下对低NH4+-N(60~90mg.L-1)城市污水进行试验研究,通过改变曝气等运行工况,经过硝化自然挂膜、优选亚硝酸细菌和培养厌氧氨氧化菌3个阶段之后,实现了生物滤池同步亚硝化/厌氧氨氧化生物自养脱氮。结果表明,DO控制可作为反应器启动的主要控制因子,通过在生物滤池上方水柱中进行曝气和处理水携氧内循环联合的方式,可以实现对生物膜系统内DO浓度的良好控制。运行过程中可以通过pH值的变化来对反应周期进行判断,pH值的第二个突跃点是系统反应周期结束的标志。  相似文献   

16.
生物陶粒MBBR同步硝化反硝化脱氮试验研究   总被引:3,自引:1,他引:2  
利用生物陶粒作为移动床生物膜反应器(MBBR)的填料,通过试验考察了MBBR发生同步硝化反硝化(SND)的可能性。分析了溶解氧和碳氮质量比对SND的影响。试验结果表明:MBBR具有良好的有机物去除及同步硝化反硝化能力。溶解氧的质量浓度在3 mg/L左右时,不仅能够满足硝化作用的需要而且又不严重抑制反硝化作用,NH3-N去除率达到81.45%的同时TN去除率为60.35%;进水碳氮质量比在10左右时,NH3-N、TN去除率分别为81.65%、63.60%。  相似文献   

17.
循环生物曝气滤池和过滤组合工艺处理炼油轻度污染废水   总被引:2,自引:1,他引:1  
谢文玉  陈建军  钟理  钟华文 《化工学报》2008,59(5):1251-1256
采用新型的循环生物曝气滤池(CBAF)和过滤组合工艺对炼油轻度污染废水进行净化回用工业试验。研究了填料粒径和高度、水力停留时间和溶解氧浓度对CBAF工艺处理效果的影响。结果表明CBAF工艺具有碳化作用、硝化作用和过滤作用。CBAF工艺净化该废水适宜的操作条件为:水力停留时间100 min,溶解氧浓度3 mg·L-1左右,反冲洗周期2~3 d。炼油轻度污染废水经该组合工艺处理后,COD、石油类污染物、NH3-N和SS平均去除率分别为62.6%、71.7%、92.6%和97.0%,出水COD、石油类污染物、NH3-N和SS平均质量浓度分别为14.4 mg·L-1、0.75 mg·L-1、0.49 mg·L-1 和2.4 mg·L-1,经处理后出水水质达到工业回用水要求。  相似文献   

18.
高氨氮垃圾渗滤液SBR法短程深度生物脱氮   总被引:7,自引:3,他引:4       下载免费PDF全文
以实际垃圾填埋场渗滤液为研究对象,应用SBR系统对该类废水短程生物脱氮的可行性进行研究,重点考察了短程生物脱氮实现、稳定及系统的脱氮性能.结果表明,经过95天的运行,SBR系统成功实现并维持了稳定短程生物脱氮,平均亚硝积累率在92.5%以上.获得了稳定的脱氮性能,NH4+-N,TN平均去除率分别在97.2%和91.7%以上.DO、ORP和pH曲线的特征点能够准确判断硝化和反硝化终点,可作为SBR处理垃圾渗滤液短程生物脱氮过程的控制参数.相对于氨氧化菌,亚硝酸盐氧化菌对FA、FNA更敏感,因此两者协同作用抑制亚硝酸盐氧化菌活性,再辅以过程控制,能够准确判断硝化终点,实现NOB从系统硝化菌群中逐渐被淘洗,AOB成为优势菌种的目标,这是系统长期维持稳定短程生物脱氮的决定因素,FISH检测结果证明了这一点.  相似文献   

19.
含盐废水硝化过程常常出现亚硝酸盐积累,从而导致强温室气体N2O的产生。利用序批式生物膜反应器(SBBR),考察了含盐生活污水同步脱氮过程不同菌群活性变化及N2O释放过程。结果表明,盐度增加,各菌群活性受抑制程度依次为亚硝酸盐氧化菌(Nitrite Oxidizing Bacteria, NOB)?氨氧化菌(Ammonia Oxidizing Bacteria, AOB)?碳氧化菌。实验盐度范围内(0~20 g NaCl/L),COD出水约稳定在50.0 mg/L,平均NH4+去除率由98%以上降至约70.5%,TN去除率由42.4%降至16.9%,N2O平均产率由3.9%增至13.3%。与SND变化类似,微生物体内聚-β-羟基脂肪酸酯(PHA)和糖原(Gly)积累随盐度增加呈先增加后减少趋势。N2O主要产生于AOB好氧反硝化过程和硝化后期内源反硝化过程。低盐度(≤10 g NaCl/L)下,SBBR内缺氧区有助于减少N2O释放;盐度增加,高盐度耦合低内碳源合成,加剧了内源反硝化阶段各还原酶之间电子竞争。高盐度导致微生物胞外聚合物(EPS)分泌增加,多聚糖(PS)比例上升,膜内缺氧区域减少,抑制N2O还原过程。  相似文献   

20.
为了提高生物脱氮的效率,研究采用序批式活性污泥法(SBR工艺)考察碳氮质量比w(C/N)与氨氮负荷对同步硝化反硝化的影响。结果表明:当w(C/N)为5.6,氨氮负荷为0.024 g/(g.d),碳源快速消耗,SBR工艺较难实现同步硝化反硝化,同步硝化反硝化率只能够达到0.76%。当w(C/N)为10.5,氨氮负荷为0.024 g/(g.d)时,SBR系统能够实现同步硝化反硝化,同步硝化反硝化率达到97.6%,NH4+-N和COD去除率均接近100%;当w(C/N)为16.3,氨氮负荷为0.024 g/(g.d)时,同步硝化反硝化率为94.5%,增加外加碳源的成本。同步硝化反硝化可以取代二段独立的硝化和反硝化过程,节省运行费用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号