首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A lead-free ferroelectric (Bi,K)TiO3 (BKT) was synthesized by a hydrothermal process and characterized systematically at various temperatures. Well-crystallized BKT in the tetragonal phase was identified at a hydrothermal temperature over 220 °C. Small cubic particles were observed, regardless of hydrothermal temperature. The BKT sintered at 1050 °C was observed to be a typical relaxor behavior and very stable against frequency and temperatures, respectively. The sintered-BKT ceramics exhibited a high temperature of maximum dielectric permittivity (Tmax = 356 °C at 106 Hz) with piezoelectric constant (d33 = 65 pC/N) and electromechanical coupling factors (kp = 0.22, kt = 0.43). Thus, the sintered-BKT showed excellent temperature stability with a high-Tmax and piezoelectric properties.  相似文献   

2.
For the first time, we have grown ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3-Pb(Fe1/2Nb1/2)O3 (PMN-PT-PFN) from the melt by the simple slow cooling process. The chemical composition of the single crystals PMN-PT-PFN (0.59/0.31/0.10) is near the morphotropic phase boundary (MPB). X-ray diffraction (XRD) was used to study phase structure of the as-grown crystals, energy dispersive X-ray spectrometer (EDS) and electron probe micro-analyzer (EPMA) were employed to confirm the chemical composition and element distribution of the as-grown crystals, respectively. The ferroelectric, dielectric and piezoelectric properties of the as-grown PMN-PT-PFN (0.59/0.31/0.10) single crystal oriented along the (0 0 1) axis were measured, which showed that the remnant polarization (Pr), coercive electric fields (Ec), the Curie temperature (Tc) and the piezoelectric coefficient (d33) were 50.2 μC/cm2, 13.9 kV/cm, 158 °C and about 1800 pC/N, respectively. All the results indicated that the PMN-PT-PFN (0.59/0.31/0.10) single crystals are promising for applying to field of high frequency.  相似文献   

3.
Lead-free (K0.5Na0.5)(Nb1−xTax)O3 ceramics with x = 0.00-0.30 were prepared by the solid-state reaction technique. The effects of Ta on microstructure, crystallographic structure, phase transition and piezoelectric properties have been investigated. It has been shown that the substitution of Ta decreases Curie temperature TC and orthorhombic-tetragonal phase transition temperature TO-T, while increasing the rhombohedral-orthorhombic phase transition temperature TR-O. In addition, piezoelectric activity is enhanced with the increase of Ta content. The ceramics with x = 0.30 have the high value of piezoelectric coefficient d33 = 205 pC/N. Moreover, kp shows little temperature dependence between −75° C and 75 °C, and d33 exhibits very good thermal stability over the range from −196 °C to 75 °C in the aging test.  相似文献   

4.
Piezoelectric ceramics (Pb0.985La0.01)1+y(Nb1−yTiy)2O6 (0 ? y ? 0.1) (PLNT) were fabricated by a conventional solid-state reaction method. The crystal structure and microstructures of specimens were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). All PLNT ceramics sintered at temperatures from 1250 °C to 1290 °C are shown to be a single orthorhombic phase. The formation of orthorhombic phase is promoted by excess PbO existed in the Ti-bearing samples during calcination processing. The increasing of the tolerance factor due to substitution of Ti4+ for Nb5+ is also responsible for the stability of orthorhombic phase. The high density of ceramics (relative density >95%) with the equiaxed grains and a minor porosity have been obtained. The measurement of dielectric and piezoelectric properties of PLNT ceramics reveals that Ti reduces the dielectric loss (tan δ) and dielectric constant (εr) of PLNT ceramics, and enhances the piezoelectric constant (d33) and Curie temperature (Tc). The optimum component with y = 0.075 possesses the excellent electrical properties: εr = 182, tan δ = 0.0018, d33 = 84 pC/N and Tc = 564 °C.  相似文献   

5.
A bismuth and lead oxide based perovskite ternary solid solution xBi(Zn1/2Ti1/2)O3 − yPbZrO3 − zPbTiO3 (xBZT − yPZ − zPT) was investigated as an attempt to develop a high TC ferroelectric material for piezoelectric sensor and actuator applications. A morphotropic phase boundary (MPB) between rhombohedral and tetragonal phases was determined through an XRD study on a pseudobinary line 0.1BZT − 0.9[xPT − (1 − x)PZ] for composition 0.1Bi(Zn1/2Ti1/2)O3 − 0.5PbZrO3 − 0.4PbTiO3. Enhanced piezoelectric and ferroelectric activities were observed for MPB composition with dielectric constant εr′ ~ 23,000 at Curie temperature (TC) ≈ 320 °C, remanent polarization (Pr) = 35 μC/cm2, piezoelectric coefficient (d33) = 300 pC/N, unipolar strain = 0.15%, and electromechanical coupling coefficient (kP) = 0.45.  相似文献   

6.
Lead-free (Ba0.93Ca0.07)(Ti0.95Zr0.05)O3 (BCZT) ceramics were prepared using a solid-state reaction technique. The structure and electrical properties were investigated with a special emphasis on the influence of sintering temperature. Crystalline structures and microstructures were analyzed by X-ray diffraction and scanning electron microscope (SEM) at room temperature. The BCZT ceramics sintered at 1450 °C show the highest densification and exhibit excellent piezoelectric properties of high piezoelectric coefficient d33 = 387 pC/N, planar mode electromechanical coupling coefficient kp = 44.2%, mechanical quality factor Qm = 140 and Curie temperature Tc = 108 °C.  相似文献   

7.
(1−x)(0.948 K0.5Na0.5NbO3-0.052LiSbO3)-xBiAlO3 (KNNLS-xBA) lead-free piezoceramics were synthesized by conventional solid state reaction method. The compositional dependence of phase structure and electrical properties of the ceramics was systemically studied. XRD patterns revealed that all the ceramic samples possessed pure perovskite structure. In addition, polymorphic phase transition (PPT) for the ceramics with BA doping could not be observed in the measuring range from room temperature to 500 °C. Within the studied range of BA addition, the ceramics with x = 0.002 represented a relatively desirable balance between the degradation of the piezoelectric properties, improvement in temperature stability and mechanical quality factor. It was found that the KNNLS-0.002BA ceramics exhibited optimum overall properties (d33 = 233 pC/N, kp = 35%, tanδ = 0.047, Pr = 27.3 μC/cm2, Qm = 56 and Tc = 349 °C), suggesting that this material should be a promising lead-free piezoelectric candidate for piezoelectric applications.  相似文献   

8.
New piezoelectric ceramics, 0.15BiScO3-0.85(Pb1 − 3/ 2Bix)(Ti0.98Mn0.02)O3 (= 0.04~0.10), were prepared by using conventional solid phase processing. The results of X-ray diffraction (XRD) show that the ceramics have a single phase tetragonal perovskite structure. The ceramics, poled by normal poling process, have piezoelectric coefficient d33, planar electromechanical coupling factor kp and thickness electromechanical coupling factor kt of 50~60 pC/N, ~ 11% and ~ 30%, respectively. An extremely high mechanical quality factor Qm of 1540 was obtained at the composition = 0.08. The Curie temperature (TC) is in the range of 520-550 °C, higher than 490 °C of pure PbTiO3. The combination of good piezoelectric properties and high TC makes these ceramics suitable for elevated temperature piezoelectric devices.  相似文献   

9.
10 mol% Pb(Fe1/2Nb1/2)O3 (PFN) modified Pb(Mg1/3Nb2/3)O3-PbZr0.52Ti0.48O3 (PMN-PZT) relaxor ferroelectric ceramics with compositions of (0.9 − x)PMN-0.1PFN-xPZT (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) were prepared. X-ray diffraction investigations indicated that as-prepared ceramics were of pure perovskite phase and the sample with composition of x = 0.8 was close to morphotropic phase boundary (MPB) between rhombohedral and tetragonal phase. Dielectric properties of the as-prepared ceramics were measured, and the Curie temperature (Tc) increased sharply with increasing PZT content and could be higher than 300 °C around morphotropic phase boundary (MPB) area. At 1 kHz, the sample with composition of x = 0.1 had the largest room temperature dielectric constant ?r = 3519 and maximum dielectric constant ?m = 20,475 at Tm, while the sample with composition of x = 0.3 possessed the maximum dielectric relaxor factor of γ = 1.94. The largest d33 = 318 pC/N could be obtained from as-prepared ceramics at x = 0.9. The maximum remnant polarization (Pr = 28.3 μC/cm2) was obtained from as-prepared ceramics at x = 0.4.  相似文献   

10.
The temperature dependence of dielectric and piezoelectric properties, electric-field-induced strains of 0.66 Pb(In1/2Nb1/2)O3-0.34 PbTiO3 single crystals, which were grown directly from melt by using the modified Bridgman technique with the allomeric Pb(Mg2/3Nb1/3)O3-PbTiO3 seed crystals, were determined as a function of crystallographic orientation with respect to the prototypic (cubic) axes. Ultrahigh piezoelectric response (d33∼2000 pC/N, k33∼94%) and strain levels up to 0.8%, comparable to rhombohedral (1−x)Pb(Mg2/3Nb1/3)O3-xPbTiO3 and (1−x)Pb(Zn2/3Nb1/3)O3-xPbTiO3 single crystals, were observed for the 〈0 0 1〉-oriented crystals. Strain levels up to 0.47% and piezoelectric constant d33∼1600 pC/N could be achieved being related to an electric-field-induced rhombohedral-orthorhombic phase transition for the 〈1 1 0〉-oriented crystals. In addition, high electromechanical coefficients k33 (∼88%) can be achieved even heating to 110 °C. High TC (∼200 °C), large electromechanical coefficients k33 (∼94%) and low dielectric loss factor (∼1%), along with large strain make the crystals promising candidates for a wide range of electromechanical transducers.  相似文献   

11.
Effects of annealing temperature (600-800 °C) on microstructure, ferroelectric and piezoelectric properties of Bi3.15Dy0.85Ti3O12 (BDT) thin films prepared by metal-organic decomposition were studied. The remnant polarization 2Pr and spontaneous polarization 2Ps (16.2 µC/cm2 and 23.3 µC/cm2 under 690 kV/cm), effective piezoelectric coefficient d33 (63 pm/V under the bipolar driving field of 310 kV/cm) of BDT thin film annealed at 700 °C are better than those of others. The higher 2Ps and relatively permittivity εr induced by moderate annealing temperature should be responsible for the enhancement of piezoelectric properties. The improved d33 may make BDT a promising candidate for piezoelectric thin film devices.  相似文献   

12.
Low temperature co-fired ceramic (LTCC) is prepared by sintering a glass selected from CaO-SiO2-B2O3 system, and its sintered bodies are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It is found that the optimal sintering temperature for this glass-ceramic is 820 °C for 15 min, and the major phases of this material are CaSiO3, CaB2O4 and SiO2. The glass-ceramic possesses excellent dielectric properties: ?r = 6.5, tan δ < 2 × 10−3 at 10 MHz, temperature coefficient of dielectric constant about −51 × 10−6 °C−1 and coefficient of thermal expansion about 8 × 10−6 °C−1 at 20-400 °C. Thus, this material is supposed to be suitable for the tape casting process and be compatible with Ag electrode, which could be used as the LTCC materials for the application in wireless communications.  相似文献   

13.
(K0.5Bi0.5)TiO3-BiScO3-PbTiO3 ceramics were synthesized by conventional solid-state method. A morphotropic phase boundary (MPB) was confirmed with the aid of structural analysis. Two dielectric anomalous peaks were observed, the one around dielectric maximum temperature (Tm) due to phase transformation from ferroelectric to paraelectric while the second one could be ascribed to space charges. Furthermore, the existence of space charges also resulted in the independence of Tm with frequency at low lead composition. A new high temperature piezoelectric ceramic, 0.30(K0.5Bi0.5)TiO3-0.30BiScO3-0.40PbTiO3 close to MPB exhibited excellent electrical properties with Tm of 384 °C, d33 of 247 pC/N, kp of 38.9%, Pr of 19.41 μC/cm2, and Ec of 2.25 kV/mm, indicative of a candidate for high temperature application.  相似文献   

14.
Bi3.25Eu0.75Ti3O12 (BET) thin films were deposited on Pt/Ti/SiO2/Si(111) substrates by a metal-organic decomposition method. The effects of annealing temperatures 600-800 °C on microstructure, ferroelectric, dielectric and piezoelectric properties of BET thin films were studied in detail. The spontaneous polarization (87.4 × 10− 6 C/cm2 under 300 kV/cm), remnant polarization (65.7 × 10− 6 C/cm2 under 300 kV/cm), the dielectric constant (992.9 at 100 kHz) and the effective piezoelectric coefficient d33 (67.3 pm/V under 260 kV/cm) of BET thin film annealed at 700 °C are better than those of the others. The mechanisms concerning the dependence of the enhancement d33 are discussed according to the phenomenological equation, and the improved piezoelectric performance could make the BET thin film a promising candidate for piezoelectric thin film devices.  相似文献   

15.
0.55Pb(Ni1/3Nb2/3)O3-0.45Pb(Zr0.3Ti0.7)O3(PNN-PZT) ceramics with different concentration of xFe2O3 doping (where x = 0.0, 0.8, 1.2, 1.6 mol%) were synthesized by the conventional solid state sintering technique. X-ray diffraction analysis reveals that all specimens are a pure perovskite phase without pyrochlore phase. The density and grain size of Fe-doped ceramics tend to increase slightly with increasing concentration of Fe2O3. Comparing with the undoped ceramics, the piezoelectric, ferroelectric and dielectric properties of the Fe-doped PNN-PZT specimens are significantly improved. Properties of the piezoelectric constant as high as d33 ~ 956 pC/N, the electromechanical coupling factor kp ~ 0.74, and the dielectric constant εr ~ 6095 are achieved for the specimen with 1.2 mol% Fe2O3 doping sintered at 1200 °C for 2 h.  相似文献   

16.
Low temperature sintering of Pb(Zr,Ti)O3-Pb(Fe2/3W1/3)O3-Pb(Mn1/3Nb2/3)O3 (PZT-PFW-PMN) quaternary piezoelectric ceramics were studied with the use of YMnO3 as sintering aid. The sintering aid improved the sinterability of PZT-PFW-PMN ceramics due to the effect of YMnO3 liquid phase. The effects of YMnO3 contents and sintering temperature on the phase structure, density, dielectric and piezoelectric properties were investigated. The results show that the sintering temperature can be decreased and the electrical properties can be maintained by the YMnO3 addition. The optimized properties were obtained by doping 0.30 wt.% YMnO3 and sintering at 1020 °C, which are listed as follows: d33 = 341 pC/N, Kp = 0.57, Qm = 1393, tan δ = 0.0053, Tc = 304 °C, Pr = 17.13 μC/cm2 and Ec = 11.15 kV/cm, which make this system be a promising material for multilayer piezoelectric actuator and transformer applications.  相似文献   

17.
Lead-free (Na0.65K0.35)NbO3 + wt.% Co2O3 (KNN-xCo) piezoceramics were synthesized by conventional ceramic processing and the effects of low Co2O3 concentration on the microstructure and electrical properties were investigated. The experimental results show that the orthorhombic-tetragonal phase transition temperature (TO-T) decreases slightly whereas the tetragonal-cubic phase transition temperature (TC) and crystal structure keep unchanged with the increasing of Co2O3 content. The doping of Co2O3 facilitates the grain growth and improves the density and piezoelectric properties of the ceramics. The sample of x = 0.2 exhibits good piezoelectric properties of piezoelectric coefficient d33 = 127pC/N and electromechanical coupling coefficient kp = 35.1% with density of ρ = 4.31/cm3. These results strongly suggest that the composition of (Na0.65K0.35)NbO3 is another promising lead-free candidate for investigation besides (Na0.5K0.5)NbO3 system.  相似文献   

18.
(1 − x) (0.95K0.5Na0.5NbO3-0.05LiSbO3)-xBiScO3 lead-free piezoceramics have been fabricated by an ordinary pressure-less sintering process. The relationship between the BS content, phase structure, density, and piezoelectric properties and their temperature stability was discussed particularly. All compositions show a main perovskite structure, showing room-temperature symmetries of orthorhombic at = 0, of tetragonal at 0.002 ≤ x ≤ 0.01. When 0.002 ≤ x ≤ 0.008, the ceramics have excellent electrical properties of d33 = 265-305 pC/N, kp = 45-54%, ?r = 1346-1638, Curie temperature Tc = 315-370 °C and depolarizing temperature Td = 315-365 °C, comparable to that of other KNN-based piezoceramics. The results indicate that the ceramics are promising lead-free piezoelectric materials.  相似文献   

19.
Ni-particle-dispersed (Ba0.95Ca0.05)(Ti0.96Zr0.04)O3 (BCTZ/Ni) piezoceramic composites were prepared via sintering at 1300 °C in industrial N2 gas. Structural characterizations showed that the metallic Ni was not oxidized and the BCTZ preserved the perovskite structure. The Ni particles were uniformly distributed in the BCTZ ceramic matrix. The relative dielectric constant ?r of the BCTZ/Ni composites increased from 1362 to 3910 with increasing Ni content from 0 to 20 vol.%, which is explained by the Maxwell equation as well as the micro-capacitor model. The percolation theory of insulator–metal transitions is also applied to correlate the rapid increase of dielectric constant with Ni content. The piezoelectric constant d33 gradually decreased from 230 to 50 pC N−1, giving a gradient profile of piezoelectric property. We demonstrate that the electrical properties can be effectively tailored by dispersing metal particles into piezoceramics.  相似文献   

20.
Crystallization and thermal stability of Ge2Sb2Te5 (GST), the benchmark working material in phase-change non-volatile memory, were modified via Si-ion implantation. Through 5 × 1015 Si-ions/cm2 ion-implantation, crystallization temperature increases from 165 °C to 177 °C. Furthermore, the activation energy of crystallization increases from 2.9 eV in the pristine film to 3.3 eV and 4.0 eV in films implanted with the doses of 5 × 1015 and 5 × 1016 Si-ions/cm2, respectively. Temperatures corresponding to a 10-year failure-time increase from 83 °C in the pristine film to 96 °C and 107 °C in films implanted with 5 × 1015 and 5 × 1016 Si-ions/cm2, respectively. Thermal stability of Si-ion implanted GST thus improves significantly. It was also found that grain growth is inhibited with higher implantation doses. In the case of the 5 × 1016 ion/cm2 dose, the second-phase transition from face-centered cubic to hexagonal closed-packed structure of the GST is completely inhibited. However, crystallization time increases slightly due to Si-ion implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号