首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Absract Dielectric and electromechanical losses play a critical role in the performance of the transducer in high power conditions. In this study, we report a systematic study on the effect of Mn-doping on the losses in the Pb(Zr x Ti1−x )O3–Pb(Zn1/3Nb2/3)O3 (PZT–PZN) system. Two types of sintering conditions were employed to synthesize ceramics with varying grain sizes. The Zr/Ti ratio in the PZT system was fixed at 52/48 corresponding to morphotropic phase boundary (MPB) and Mn concentration was varied from 0 to 0.9 wt%. The results show that the composition 0.9PZT–0.1PZN + 0.5 wt% Mn provides optimized magnitude for the dielectric, piezoelectric, and loss properties.  相似文献   

2.
Relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) and 10% PbZrO3-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) ceramics were both prepared by a modified precursor method, which was based on the high-temperature synthesis of an oxide precursor that contained all the B-site cations for the consideration of B-site homogeneity. The dielectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) ceramic was more of normal ferroelectric behavior, but the high dielectric constant (?m = 34,200 at 1 kHz) and piezoelectric constant (d33 = 709 pC/N) were observed for this composition close to the morphotropic phase boundary. Comparatively, introduction of 10% PbZrO3 into Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) ceramics enhanced the diffuse phase transition as well as the rhombohedral to tetragonal phase transition temperature, while it also kept the high dielectric constant (?m = 29,600 at 1 kHz) and piezoelectric constant (d33 = 511 pC/N).  相似文献   

3.
In this work, the piezoelectric ceramic system of Pb[(Zr1−xTix)0.74(Mg1/3Nb2/3)0.20(Zn1/3Nb2/3)0.06]O3, 0.47≤x≤0.57, with composition close to the morphotropic phase boundary, was studied. From the results of X-ray diffraction and piezoelectric measurement, ceramics near x=0.51 were found at the morphotropic phase boundary (MPB) between the tetragonal and pseudocubic perovskite. The planar coupling factor (kp=0.72) is high at compositions near the MPB, but the mechanical quality factor (Qm=75) is low. The calculation of the diffuseness of phase transition shows that the region of phase coexistence of this system is broader than that of the ternary system.  相似文献   

4.
For the first time, we have grown ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3-Pb(Fe1/2Nb1/2)O3 (PMN-PT-PFN) from the melt by the simple slow cooling process. The chemical composition of the single crystals PMN-PT-PFN (0.59/0.31/0.10) is near the morphotropic phase boundary (MPB). X-ray diffraction (XRD) was used to study phase structure of the as-grown crystals, energy dispersive X-ray spectrometer (EDS) and electron probe micro-analyzer (EPMA) were employed to confirm the chemical composition and element distribution of the as-grown crystals, respectively. The ferroelectric, dielectric and piezoelectric properties of the as-grown PMN-PT-PFN (0.59/0.31/0.10) single crystal oriented along the (0 0 1) axis were measured, which showed that the remnant polarization (Pr), coercive electric fields (Ec), the Curie temperature (Tc) and the piezoelectric coefficient (d33) were 50.2 μC/cm2, 13.9 kV/cm, 158 °C and about 1800 pC/N, respectively. All the results indicated that the PMN-PT-PFN (0.59/0.31/0.10) single crystals are promising for applying to field of high frequency.  相似文献   

5.
0.55Pb(Ni1/3Nb2/3)O3-0.45Pb(Zr0.3Ti0.7)O3(PNN-PZT) ceramics with different concentration of xFe2O3 doping (where x = 0.0, 0.8, 1.2, 1.6 mol%) were synthesized by the conventional solid state sintering technique. X-ray diffraction analysis reveals that all specimens are a pure perovskite phase without pyrochlore phase. The density and grain size of Fe-doped ceramics tend to increase slightly with increasing concentration of Fe2O3. Comparing with the undoped ceramics, the piezoelectric, ferroelectric and dielectric properties of the Fe-doped PNN-PZT specimens are significantly improved. Properties of the piezoelectric constant as high as d33 ~ 956 pC/N, the electromechanical coupling factor kp ~ 0.74, and the dielectric constant εr ~ 6095 are achieved for the specimen with 1.2 mol% Fe2O3 doping sintered at 1200 °C for 2 h.  相似文献   

6.
The solid solutions in the 0.36BiScO3-0.64(1 − x)PbTiO3-0.64xPb(Sc1/2Nb1/2)O3 system were fabricated using wolframite precursor method. A coexistence of rhombohedral and tetragonal phases is formed in the studied compositions range and a wide morphotropic phase boundary region is confirmed by X-ray diffraction results. After the addition of Pb(Sc1/2Nb1/2)O3, a relaxor behavior is induced and the dielectric maximum temperature shifts to higher temperatures with increasing measuring frequencies. The presence of relaxor can be ascribed to the formation of polar nanoregions. The studied composition exhibits the optimal ferroelectric and piezoelectric properties with d33 of 453 pC/N and Kp of 0.58, Tm of 405 °C for x = 0.10 composition, which is suitable for future high-temperature piezoelectric application.  相似文献   

7.
Ferroelectrics 0.67Pb (Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT) + x mol% WO3 (x=0.1, 0.5, 1, 2) were prepared by columbite precursor method. Electrical properties of WO3-modified ferroelectrics were investigated. X-ray diffraction (XRD) was used to identify crystal structure, and pyrochlore phase were observed in 0.67Pb (Mg1/3Nb2/3)O3-0.33PbTiO3+2 mol% WO3. Dielectric peak temperature decreased with WO3 doping, indicating that W6+ incorporated into PMN-PT lattice. Lattice constant, pyrochlore phase and grain size contribute to the variation of Kmax. Both piezoelectric constant (d33) and electromechanical coupling factors (kp) were enhanced by doping 0.1 mol% WO3, which results from the introduction of “soft” characteristics into PMN-PT, while further WO3 addition was detrimental. We consider that the two factors, introduction of “soft” characteristics and the formation of pyrochlore phase, appear to act together to cause the variation of piezoelectric properties of 0.67PMN-0.33PT ceramics doping with WO3.  相似文献   

8.
Stoichiometric lead magnesium niobate, Pb(Mg1/3Nb2/3)O3 (PMN), perovskite ceramics produced by reaction-sintering process were investigated. Without calcination, a mixture of PbO, Nb2O5, and Mg(NO3)2 was pressed and sintered directly. Stoichiometric PMN ceramics of 100% perovskite phase were obtained for 1, 2, and 4 h sintering at 1250 and 1270 °C. PMN ceramics with density 8.09 g/cm3 (99.5% of theoretical density 8.13 g/cm3) and Kmax 19,900 under 1 kHz were obtained.  相似文献   

9.
(1 − x) (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 − x BiFeO3 (x = 0, 0.002, 0.004, 0.006, 0.008, 0.01) lead-free piezoelectric ceramics were prepared by the conventional ceramic processing. The compositional dependence of the phase structure and the electrical properties of the ceramics were studied. A morphotropic phase boundary between the orthorhombic and tetragonal phases was identified in the composition range of 0.004 < x < 0.006. The ceramics near the morphotropic phase boundary exhibit a strong compositional dependence and enhanced piezoelectric properties. The ceramics with 0.6 mol.% BiFeO3 exhibit good electrical properties (d33 ∼ 246 pC/N, kp ∼ 43%, Tc ∼ 285 °C, ?r ∼ 1871, and tan δ ∼ 1.96%). These results show that the (1 − x) (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 − x BiFeO3 ceramic is a promising lead-free piezoelectric material for applications in different devices.  相似文献   

10.
The temperature dependence of dielectric and piezoelectric properties, electric-field-induced strains of 0.66 Pb(In1/2Nb1/2)O3-0.34 PbTiO3 single crystals, which were grown directly from melt by using the modified Bridgman technique with the allomeric Pb(Mg2/3Nb1/3)O3-PbTiO3 seed crystals, were determined as a function of crystallographic orientation with respect to the prototypic (cubic) axes. Ultrahigh piezoelectric response (d33∼2000 pC/N, k33∼94%) and strain levels up to 0.8%, comparable to rhombohedral (1−x)Pb(Mg2/3Nb1/3)O3-xPbTiO3 and (1−x)Pb(Zn2/3Nb1/3)O3-xPbTiO3 single crystals, were observed for the 〈0 0 1〉-oriented crystals. Strain levels up to 0.47% and piezoelectric constant d33∼1600 pC/N could be achieved being related to an electric-field-induced rhombohedral-orthorhombic phase transition for the 〈1 1 0〉-oriented crystals. In addition, high electromechanical coefficients k33 (∼88%) can be achieved even heating to 110 °C. High TC (∼200 °C), large electromechanical coefficients k33 (∼94%) and low dielectric loss factor (∼1%), along with large strain make the crystals promising candidates for a wide range of electromechanical transducers.  相似文献   

11.
Thin films of the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) on Pt/Ti/SiO2/Si (Pt/Si) substrates both with and without a Pb(Zr0.52Ti0.48)O3 (PZT) interfacial layer were investigated. Perovskite and pyrochlore coexistence was observed for PMN-PT thin films without a PZT interfacial layer. Interestingly, most of the pyrochlore phase was observed in single-coated films and in the first layer of multi-coated films. The pyrochlore phase exhibited grains with an average size of about 25 nm, which is smaller than those of the perovskite phase (about 90 nm). In contrast, for PMN-PT thin films grown on a PZT interfacial layer, the formation of a pyrochlore phase at the interface between PMN-PT layers and the substrate is completely suppressed. Moreover, small grains are not observed in the films with a PZT interfacial layer. The measured polarization-electric field (P-E) hysteresis loops of PMN-PT films with and without PZT layers indicate that enhanced electrical properties can be obtained when a PZT interfacial layer is used. These enhanced properties include an increase in the value of remanent polarization Pr from 2.7 to 5.8 μC/cm2 and a decrease in the coercive field Ec from 60.5 to 28.0 kV/cm.  相似文献   

12.
A Pb(Yb1/2Nb1/2)O3-PbTiO3 [PYNT] solid solution was synthesized and characterized for its potential use. The shear-mode dielectric and piezoelectric behaviors of PYNT with a morphotropic phase boundary (MPB) composition were studied as a function of temperature. Dielectric permittivity K11T and loss were found to be 2310 and 2.5%, respectively, at room temperature. Piezoelectric coefficient d15 and electromechanical coupling factor k15 were calculated to be 710 pC/N and 0.70, respectively, maintaining nearly constant up to 300 °C, resistivity and RC time constant were observed to be 2.4 × 109 Ω cm and 1.07 s, respectively, at 350 °C. These good piezoelectric properties, together with the high Curie temperature (Tc ∼ 370 °C), indicate that PYNT is a promising candidate for high temperature-shear sensor and inkjet actuator applications.  相似文献   

13.
In this article, we report our studies on the relaxor behavior of Ba(Ti1−xHfx)O3 ceramics, made with close compositions between 0.20 ≤ x ≤ 0.30, to locate the hafnium concentration boundary for the normal to relaxor crossover. X-ray diffraction followed by Rietveld refinement shows the occurrence of single-phase cubic structure for the synthesized Ba(Ti1−xHfx)O3 ceramics. Temperature and frequency dependence of the real (?′) and imaginary (?″) parts of the dielectric permittivity has been studied in the temperature range of 90-350 K at frequencies of 0.1, 1, 10, and 100 kHz. A diffuse phase transition accompanying frequency dispersion is observed in the permittivity versus temperature plots revealing the occurrence of relaxor ferroelectric behavior. The Tm verses Hf concentration plot shows a discontinuous jump and change in the slope at x = 0.23. Quantitative characterization based on phenomenological models has also been presented. The plausible mechanism of the relaxor behavior has been discussed. Substitution of Hf4+ for Ti4+ in BaTiO3 reduces the long-range polar ordering yielding a diffuse ferroelectric phase transition.  相似文献   

14.
(5 − x)BaO-xMgO-2Nb2O5 (x = 0.5 and 1; 5MBN and 10MBN) microwave ceramics prepared using a reaction-sintering process were investigated. Without any calcinations involved, the mixture of BaCO3, MgO, and Nb2O5 was pressed and sintered directly. MBN ceramics were produced after 2-6 h of sintering at 1350-1500 °C. The formation of (BaMg)5Nb4O15 was a major phase in producing 5MBN ceramics, and the formation of Ba(Mg1/3Nb2/3)O3 was a major phase in producing 10MBN ceramics. As CuO (1 wt%) was added, the sintering temperature dropped by more than 150 °C. We produced 5MBN ceramics with these dielectric properties: ?r = 36.69, Qf = 20,097 GHz, and τf = 61.1 ppm/°C, and 10MBN ceramics with these dielectric properties: ?r = 39.2, Qf = 43,878 GHz, and τf = 37.6 ppm/°C. The reaction-sintering process is a simple and effective method for producing (5 − x)BaO-xMgO-2Nb2O5 ceramics for applications in microwave dielectric resonators.  相似文献   

15.
A bismuth and lead oxide based perovskite ternary solid solution xBi(Zn1/2Ti1/2)O3 − yPbZrO3 − zPbTiO3 (xBZT − yPZ − zPT) was investigated as an attempt to develop a high TC ferroelectric material for piezoelectric sensor and actuator applications. A morphotropic phase boundary (MPB) between rhombohedral and tetragonal phases was determined through an XRD study on a pseudobinary line 0.1BZT − 0.9[xPT − (1 − x)PZ] for composition 0.1Bi(Zn1/2Ti1/2)O3 − 0.5PbZrO3 − 0.4PbTiO3. Enhanced piezoelectric and ferroelectric activities were observed for MPB composition with dielectric constant εr′ ~ 23,000 at Curie temperature (TC) ≈ 320 °C, remanent polarization (Pr) = 35 μC/cm2, piezoelectric coefficient (d33) = 300 pC/N, unipolar strain = 0.15%, and electromechanical coupling coefficient (kP) = 0.45.  相似文献   

16.
0.68PbMg1/3Nb2/3O3-0.32PbTiO3 (PMN-PT) thin films with a lead zirconate titanate Pb(Zr0.3Ti0.7)O3 (PZT)/PbOx buffer layer were deposited on Pt/TiO2/SiO2/Si substrates by radio frequency magnetron sputtering technique, and pure perovskite crystalline phase with highly (100)-preferred orientation was formed in the ferroelectric films. We found that the highly (100)-oriented thin films possess not only excellent dielectric and ferroelectric properties but also a large electrocaloric effect (13.4 K at 15 V, i.e., 0.89 K/V) which is attributed to the large electric field-induced polarization and entropy change during the ferroelectric-paraelectric phase transition. The experimental results indicate that the use of PZT/PbOx buffer layer can induce the crystal orientation and phase purity of the PMN-PT thin films, and consequently enhance their electrical properties.  相似文献   

17.
Features of phase coexistence in solid solutions of (1 − x)Pb(Fe1/2Nb1/2)O3 − xPbTiO3 with the perovskite-type structure are studied at 0.05 ≤ x ≤ 0.08. The role of elastic matching of the tetragonal P4mm and monoclinic Cm phases of the ferroelectric nature is considered near the morphotropic phase boundary. Model concepts on the stress relief in heterophase structures are developed and applied to interpret the phase content in (1 − x)Pb(Fe1/2Nb1/2)O3 − xPbTiO3. Good agreement between the calculated and experimental dependences of the volume fraction of the tetragonal phase on x is observed. It is shown that the studied phase coexistence under conditions for the complete stress relief can take place at elastic matching of the single-domain monoclinic phase and the tetragonal phase split into two types of 90° domains.  相似文献   

18.
Bismuth perovskites have been attracting attention as a family of piezoelectric ceramics in place of the widely used Pb (Zr, Ti)O3 (PZT) system. The advantages of bismuth perovskites over PZT are environmentally more-friendly materials, a higher mechanical strength and Curie temperature. Most recently BiMgZrO3-PbTiO3 has been reported to be high temperature morphotropic phase boundary (MPB) piezoelectric with appreciably good ferroelectric and piezoelectric properties.Bismuth containing crystalline solutions [(BiMgZrO3)1−y-(BiFeO3)y]x-(PbTiO3)1−x, (BMZ-BF-PT) have been synthesized by high temperature solid-state reaction technique. The crystalline symmetry varied with the composition, indicating good solid-state solubility of BMZ and BF with PT. X-ray diffraction (XRD) reveals that BMZ-BF-PT has a single-phase perovskite structure. The Morphotropic Phase Boundary (MPB) of BMZ-PT system lies in the region x = 0.55 to x = 0.6 which is supported by the transformation from tetragonal to rhombohedral phase. The SEM photographs reveal the uniform distribution of grains in the matrix. Variation of dielectric parameters with frequency (at room temperature) exhibit typical dielectric behavior for all compositions.  相似文献   

19.
Ceramics in a PZT-PCN system with the formula (1 − x)Pb(Zr1/2Ti1/2)O3-(x)Pb(Co1/3Nb2/3)O3, where x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, and 1.0, were prepared using a solid-state mixed-oxide technique with columbite−CoNb2O6 and wolframite−ZrTiO4 precursors. The crystal structure of the specimens studied with X-ray diffraction (XRD) analysis showed a coexistence between tetragonal and pseudo cubic phases at composition x = 0.2. The SEM micrograph showed that the average grain size significantly decreased with increasing PCN content. A maximum dielectric constant was observed at composition x = 0.2, while the transition temperature strongly decreased with increasing PCN content. All ceramics also showed diffused phase transition behaviors with a minimum diffusivity at x = 0.2. The morphotropic phase boundary (MPB) lay at the 0.8PZT-0.2PCN composition.  相似文献   

20.
Ferrite (Ni0.6Co0.4Fe2O4) phase, ferroelectric (Pb(Mg1/3Nb2/3)0.67Ti0.33O3) phase and magnetoelectric composites of (x)Ni0.6Co0.4Fe2O4 + (1 − x)Pb(Mg1/3Nb2/3)0.67Ti0.33O3 with x = 0.15, 0.30 and 0.45 were prepared using solid-state reaction technique. Presence of Ni0.6Co0.4Fe2O4 and Pb(Mg1/3Nb2/3)0.67Ti0.33O3 was confirmed using X-ray diffraction technique. The scanning electron microscopic images were used to study the microstructure of the composites. Connectivity scheme present in the magnetoelectric (ME) composites are discussed from the microscopic images. Variation of dielectric constant and dielectric loss with temperature for all the composites was studied. Here we report the effect of Ni0.6Co0.4Fe2O4 mole fraction on connectivity schemes between Ni0.6Co0.4Fe2O4 and Pb(Mg1/3Nb2/3)0.67Ti0.33O3 composite. The variation of magnetoelectric voltage coefficient with dc magnetic field shows peak behaviour. The maximum value of magnetoelectric voltage coefficient of 9.47 mV/cm Oe was obtained for 0.15Ni0.6Co0.4Fe2O4 + 0.85Pb(Mg1/3Nb2/3)0.67Ti0.33O3 composites. Finally we have co-related the effect of Ni0.6Co0.4Fe2O4 content and dielectric properties on magnetoelectric voltage coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号