首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activated carbon-supported copper, iron, or vanadium oxide catalysts were exposed to incineration flue gas to investigate the simultaneous catalytic oxidation of sulfur dioxide/hydrogen chloride and selective catalytic reduction of nitrogen oxide by carbon monoxide. The results show that AC-supported catalysts exhibit higher activities for SO2 and HCl oxidation than traditional γ-Al2O3-supported catalysts and the iron and vanadium catalysts act as catalysts instead of sorbents, and can decompose sulfate with evolution of SO3 and then regenerate for more SO2 adsorption to take place. The AC-supported catalysts also display a high activity for NO reduction with CO generated from a flue gas incineration process and the presence of SO2 in the incineration flue gas can significantly promote catalytic activity. Using CO as the reducing agent for NO reduction is more effective than using NH3, because NH3 may be partially oxidized in the presence of excess O2 (12 vol%. in the incineration flue gas used) to form N2, which can decrease the overall extent of NO reduction.  相似文献   

2.
Z.H. Wang  A. Ehn  Z.S. Li  J. Bood  K.F. Cen 《Fuel》2010,89(9):2346-130
Direct ozone (O3) injection is a promising flue-gas treatment technology based on oxidation of NO and Hg into soluble species like NO2, NO3, N2O5, oxidized mercury, etc. These product gases are then effectively removed from the flue gases with the wet flue gas desulfurization system for SO2. The kinetics and mixing behaviors of the oxidation process are important phenomena in development of practical applications. In this work, planar laser-induced fluorescence (PLIF) of NO and NO2 was utilized to investigate the reaction structures between a turbulent O3 jet (dry air with 2000 ppm O3) and a laminar co-flow of simulated flue gas (containing 200 ppm NO), prepared in co-axial tubes. The shape of the reaction zone and the NO conversion rate along with the downstream length were determined from the NO-PLIF measurements. About 62% of NO was oxidized at 15d (d, jet orifice diameter) by a 30 m/s O3 jet with an influence width of about 6d in radius. The NO2 PLIF results support the conclusions deduced from the NO-PLIF measurements.  相似文献   

3.
Feng-Yim Chang  Ming-Yen Wey 《Fuel》2010,89(8):1919-1927
SO2 and HCl are major pollutants emitted from waste incineration processes. Both pollutants are difficult to remove completely and can enter the catalytic reactor. In this work, the effects of SO2 and HCl on the performance of Rh/Al2O3 and Rh-Na/Al2O3 catalysts for NO removal were investigated in simulated waste incineration conditions. The characterizations of the catalysts were analyzed by BET, SEM/EDS, XRD, and ESCA. Experimental results indicated the 1%Rh/Al2O3 catalyst was significantly deactivated for NO and CO conversions when SO2 and HCl coexisted in the flue gas. The addition of between 2 and 10 wt.% Na promoted the activity of the 1%Rh/Al2O3 catalyst for NO removal, but decreased the CO oxidation and BET surface area. The catalytic activity for NO removal was inhibited by HCl as a result of the formation of RhCl3. Adding Na to the Rh/Al2O3 catalyst decreased the inhibition of SO2 because of the formation of Na2SO4, which was observed in the XRD and ESCA analyses. SEM mapping/EDS showed that more S was residual on the surface of the Rh-Na/Al2O3 catalyst than Cl.  相似文献   

4.
A series of bench-scale experiments were completed to evaluate acid gases of HCl, SO2, and SO3 on mercury oxidation across a commercial selective catalytic reduction (SCR) catalyst. The SCR catalyst was placed in a simulated flue gas stream containing O2, CO2, H2O, NO, NO2, and NH3, and N2. HCl, SO2, and SO3 were added to the gas stream either separately or in combination to investigate their interactions with mercury over the SCR catalyst. The compositions of the simulated flue gas represent a medium-sulfur and low- to medium-chlorine coal that could represent either bituminous or subbituminous. The experimental data indicated that 5–50 ppm HCl in flue gas enhanced mercury oxidation within the SCR catalyst, possibly because of the reactive chlorine species formed through catalytic reactions. An addition of 5 ppm HCl in the simulated flue gas resulted in mercury oxidation of 45% across the SCR compared to only 4% mercury oxidation when 1 ppm HCl is in the flue gas. As HCl concentration increased to 50 ppm, 63% of Hg oxidation was reached. SO2 and SO3 showed a mitigating effect on mercury chlorination to some degree, depending on the concentrations of SO2 and SO3, by competing against HCl for SCR adsorption sites. High levels of acid gases of HCl (50 ppm), SO2 (2000 ppm), and SO3 (50 ppm) in the flue gas deteriorate mercury adsorption on the SCR catalyst.  相似文献   

5.
UV/H2O2氧化联合Ca(OH)2吸收同时脱硫脱硝   总被引:1,自引:0,他引:1       下载免费PDF全文
刘杨先  张军  王助良 《化工学报》2012,63(10):3277-3283
在小型紫外光-鼓泡床反应器中,对UV/H2O2氧化联合Ca(OH)2吸收同时脱除燃煤烟气中NO与SO2的主要影响因素[H2O2浓度、紫外光辐射强度、Ca(OH)2浓度、NO浓度、溶液温度、烟气流量以及SO2浓度]进行了考察。采用烟气分析仪和离子色谱仪分别对尾气中的NO2和液相阴离子作了检测分析。结果显示:在本文所有实验条件下,SO2均能实现完全脱除。随着H2O2浓度、紫外光辐射强度和Ca(OH)2浓度的增加,NO的脱除效率均呈现先大幅度增加后轻微变化的趋势。NO脱除效率随烟气流量和NO浓度的增加均有大幅度下降。随着溶液温度和SO2浓度的增加,NO脱除效率仅有微小的下降。离子色谱分析表明,反应产物主要是SO42-和NO3-,同时有少量的NO2-产生。尾气中未能检测到有害气体NO2。  相似文献   

6.
介质阻挡放电中气体成分对NOx脱除的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
汪涛  孙保民  肖海平  杜旭  曾菊瑛  段二朋  饶甦 《化工学报》2012,63(11):3652-3659
利用介质阻挡放电(DBD)产生低温等离子体进行烟气的脱硝实验,研究了在乙烯存在的条件下,温度和其他烟气成分对NOx脱除率的影响。结果表明:随着温度的升高,NO脱除速率增快;模拟烟气中加入CO2,在能量密度较低时,CO2作为电负性分子会降低自由基的生成,导致NO的脱除率降低,随着能量密度的升高,CO2对NO脱除的影响减小;模拟烟气中加入水后可以产生更多的OH、HO2等自由基,促进NO的氧化;SO2的加入会与自由基O反应,使初始反应中O与C2H4的反应速率减弱,从而影响了NO的氧化速率,但O3、HO2等强氧化自由基会优先与NO反应,因此SO2的加入不会影响NO最终的脱除率。  相似文献   

7.
Parametric experiments were carried out to study the interactions of mercury, SO3, and injected activated carbon (AC) in a coal flue gas stream. The levels of SO3 vapor in flue gas were altered by individually varying flue gas temperature, moisture, or sodium fume injection in the flue gas. Meanwhile, mercury emissions with AC injection (ACI) upstream of an electrostatic precipitator (ESP) were evaluated under varied SO3 concentrations. SO3 measurements using a condensation method indicated that low temperature, high moisture content, and sodium fume injection in flue gas shifted SO3 partitioning from the vapor to particulate phase, subsequently improving mercury capture with ACI. 0.08 g/m3 of DARCO® Hg-LH injection only provided approximately 20% mercury reduction across the ESP in a bituminous coal flue gas containing 28 ppm SO3, but mercury capture was increased to 80% when the SO3 vapor concentration was lowered less than 2 ppm. Experimental data clearly demonstrate that elevated SO3 vapor is the key factor that impedes mercury adsorption on AC, mainly because SO3 directly competes against mercury for the same binding sites and overwhelmingly consumes all binding sites.  相似文献   

8.
ABSTRACT

Heterogeneous catalytic ozonation is an efficient technology for degrading refractory organic pollutants in water. However, most studied heterogeneous catalysts for catalytic ozonation were powders, which were not practically available for continuous fixed-bed reactor in water treatment. In this work, manganese, iron and cerium oxides on γ-Al2O3 pellets were synthesized and used as heterogeneous catalysts for catalytic ozonation in a continuous fixed-bed reactor. Results showed that all the prepared metal oxides on γ-Al2O3 pellets exhibited facilitated catalytic ozonation for degrading refractory contaminates compared with ozonation alone and catalytic ozonation on pure γ-Al2O3 pellets. The cerium oxides supported on γ-Al2O3 pellets (CeO2/γ-Al2O3) performed best catalytic performance with the COD removal efficiency of 64.3% and TOC removal efficiency of 41.7%. Moreover, the catalytic activity was further enhanced by the synergistic effect of the bimetallic oxides on γ-Al2O3 pellets (CeO2-Fe2O3/γ-Al2O3). This study is expected to help to encourage further research and applications in AOPs based on the success of this work in designing heterogeneous catalysts available for continuous fixed-bed reactor.  相似文献   

9.
Catalytic conversion of CO2 to liquid fuels has the benefit of reducing CO2 emission. Adsorption and activation of CO2 on the catalyst surface are key steps of the conversion. Herein, we used density functional theory (DFT) slab calculations to study CO2 adsorption and activation over the γ-Al2O3-supported 3d transition metal dimers (M2/γ-Al2O3, M = Sc–Cu). CO2 was found to adsorb on M2/γ-Al2O3 negatively charged and in a bent configuration, indicating partial activation of CO2. Our results showed that both the metal dimer and the γ-Al2O3 support contribute to the activation of the adsorbed CO2. The presence of a metal dimer enhances the interaction of CO2 with the substrate. Consequently, the adsorption energy of CO2 on M2/γ-Al2O3 is significantly higher than that on the γ-Al2O3 surface without the metal dimer. The decreasing binding strength of CO2 on M2/γ-Al2O3 as M2 changes from Sc2 to Cu2 was attributed to decreasing electron-donation by the supported metal dimers. Hydroxylation of the support surface reduces the amount of charge transferred to CO2 for the same metal dimer and weakens the CO2 chemisorption bonds. Highly dispersed metal particles maintained at a small size are expected to exhibit good activity toward CO2 adsorption and activation.  相似文献   

10.
Gas-phase elemental mercury capture by a V2O5/AC catalyst   总被引:3,自引:0,他引:3  
Gas-phase elemental mercury (Hg0) capture by an activated coke (AC) supported V2O5 (V2O5/AC) catalyst was studied in simulated flue gas and compared with that by the AC. The study on the influences of V2O5 loading, temperature, capture time and flue gas components (O2, SO2, H2O and N2) shows that the Hg0 capture capability of V2O5/AC is much higher than that of AC. It increases with an increase in V2O5 loading and is promoted by O2, which indicates the important role of V2O5 in Hg0 oxidation and capture; it is promoted slightly by SO2 but inhibited by H2O; it increases with an increase in temperature up to 150 °C when Hg desorption starts. X-ray photoelectron spectroscopy analysis and sequential chemical extraction experiments indicate that the main states of Hg captured on V2O5/AC are HgO and HgSO4. Temperature programmed desorption experiments were also made to understand the stability of the Hg captured.  相似文献   

11.
Xinyan Xing  Zhenyu Liu  Jianli Yang 《Fuel》2008,87(8-9):1705-1710
Flue gas SO2 removal at 200 °C over Mo and Co doped V2O5/AC catalyst-sorbents and regeneration of the used catalyst-sorbents in H2 at 380 °C in the same reactor are studied in this paper. Compared with V2O5/AC, the catalyst-sorbents containing Co show higher SO2 uptake while the one containing Mo shows a slightly lower SO2 uptake. Elemental sulfur is produced during H2-regeneration of the used catalyst-sorbents when effluent gas of the regeneration is recycled back to the reactor. H2-regeneration of the used V2O5/AC produces little elemental sulfur, but the Mo and Co doped ones show high elemental sulfur yields with an elemental sulfur selectivity of 50% for a catalyst-sorbent containing 2% V2O5, 0.5% MoO3 and 0.5% CoO, V2Mo0.5 Co0.5/AC. Molybdenum and cobalt sulfides are likely formed in the regeneration, which catalyze the elemental sulfur formation but reduce the SO2 uptake of the catalyst-sorbents in the subsequent SO2 removal stage.  相似文献   

12.
Supporting V2O5 onto an activated coke (AC) has been reported to significantly increase the AC's activity in simultaneous SO2 and NO removal from flue gas. To understand the role of V2O5 on SO2 removal, V2O5/AC is studied through SO2 removal reaction, surface analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) techniques. It is found that the main role of V2O5 in SO2 removal over V2O5/AC is to catalyze SO2 oxidation through a VOSO4-like intermediate species, which reacts with O2 to form SO3 and V2O5. The SO3 formed transfers from the V sites to AC sites and then reacts with H2O to form H2SO4. At low V2O5 loadings, a V atom is able to catalyze as many as 8 SO2 molecules to SO3. At high V2O5 loadings, however, the number of SO2 molecules catalyzed by a V atom is much less, due possibly to excessive amounts of V2O5 sites in comparison to the pores available for SO3 and H2SO4 storage.  相似文献   

13.
J.D.A. Bellido 《Fuel》2009,88(9):1673-1034
ZrO2, γ-Al2O3 and ZrO2/γ-Al2O3-supported copper catalysts have been prepared, each with three different copper loads (1, 2 and 5 wt%), by the impregnation method. The catalysts were characterized by nitrogen adsorption (BET), X-ray diffraction (XRD), temperature programmed reduction (TPR) with H2, Raman spectroscopy and electronic paramagnetic resonance (EPR). The reduction of NO by CO was studied in a fixed-bed reactor packed with these catalysts and fed with a mixture of 1% CO and 1% NO in helium. The catalyst with 5 wt% copper supported on the ZrO2/γ-Al2O3 matrix achieved 80% reduction of NO. Approximately the same rate of conversion was obtained on the catalyst with 2 wt% copper on ZrO2. Characterization of these catalysts indicated that the active copper species for the reduction of NO are those in direct contact with the oxygen vacancies found in ZrO2.  相似文献   

14.
15.
A novel silica–titania (SiO2–TiO2) nanocomposite has been developed to effectively capture elemental mercury (Hg0) under UV irradiation. Previous studies under room conditions showed over 99% Hg0 removal efficiency using this nanocomposite. In this work, the performance of the nanocomposite on Hg0 removal was tested in simulated coal-fired power plant flue gas, where water vapor concentration is much higher and various acid gases, such as HCl, SO2, and NOx, are present. Experiments were carried out in a fix-bed reactor operated at 135 °C with a baseline gas mixture containing 4% O2, 12% CO2, and 8% H2O balanced with N2. Results of Hg speciation data at the reactor outlet demonstrated that Hg0 was photocatalytically oxidized and captured on the nanocomposite. The removal efficiency of Hg0 was found to be significantly affected by the flue gas components. Increased water vapor concentration inhibited Hg0 capture, due to the competitive adsorption of water vapor. Both HCl and SO2 promoted the oxidation of Hg0 to Hg(II), resulting in higher removal efficiencies. NO was found to have a dramatic inhibitory effect on Hg0 removal, very likely due to the scavenging of hydroxyl radicals by NO. The effect of NO2 was found to be insignificant. Hg removal in flue gases simulating low rank coal combustion products was found to be less than that from high rank coals, possibly due to the higher H2O concentration and lower HCl and SO2 concentrations of the low rank coals. It is essential, however, to minimize the adverse effect of NO to improve the overall performance of the SiO2–TiO2 nanocomposite.  相似文献   

16.
SO2 oxidation over the V2O5/TiO2 SCR catalyst   总被引:3,自引:0,他引:3  
The effects of V2O5 loading of the V2O5/TiO2 SCR catalyst on SO2 oxidation activity were examined by infrared spectroscopy (DRIFT) and SO2 oxidation measurement. Vanadium oxide added to the catalyst was found to be well dispersed over the TiO2 carrier until covered with monolayer V2O5. The rate of SO2 oxidation increased almost linearly with V2O5 loading below the monolayer capacity and attained saturation with further increase. The hydroxyl groups bonded to vanadium atoms, V–OH, might be altered by SO2 oxidation. Both V=O and V–OH groups are likely involved in the adsorption and desorption of SO2 and SO3.  相似文献   

17.
In this study, we investigated the effect of mixing α-Al2O3 and γ-Al2O3 with a Pt catalyst on CH4 selective catalytic reduction (SCR). Among the prepared catalysts, the Pt/α-Al2O3 catalyst was found to have the lowest catalytic activity, but the best adsorption characteristics for CH4, which was used as the reductant. In contrast, the Pt/γ-Al2O3 catalyst was found to exhibit relatively high catalytic activity and moderate adsorption characteristics. To simultaneously enhance the catalytic activity and CH4 adsorption characteristics, we developed a new catalyst, Pt/γ-Al2O3 + Pt/α-Al2O3, by mixing α-Al2O3 and γ-Al2O3 with a Pt catalyst. The catalytic activity test confirmed that mixing these catalysts led to enhanced catalytic activity.  相似文献   

18.
Deactivation of palladium and platinum catalysts due to coke formation was studied during hydrogenation of methyl esters of sunflower oil. The supported metal catalysts were prepared by impregnating γ-alumina with either palladium or platinum salts, and by impregnating α-alumina with palladium salt. The catalysts were reused for several batch experiments. The Pd/γ-Al2O3 catalyst lost more than 50% of its initial activity after four batch experiments, while the other catalysts did not deactivate. Samples of used catalysts were cleaned from remaining oil by repeated extractions with methanol, and the amount of coke formed on the catalysts was studied by temperature-programmed oxidation. The deactivation of the catalyst is a function of both the metal and the support. The amount of coke increased on the Pd/γ-Al2O3 catalyst with repeated use, but the amount of coke remained approximately constant for the Pt/γ-Al2O3 catalyst. Virtually no coke was detected on the Pd/α-Al2O3 catalyst. The formation of coke on Pd/α-Al2O3 may be slower than on the Pd/γ-Al2O3 owing to the carrier’s smaller surface area and less acidic character. The absence of deactivation for the Pt/γ-Al2O3 catalyst may be explained by slower formation of coke precursors on platinum compared to palladium.  相似文献   

19.
Advanced oxidation methods are used to remove traces of pharmaceuticals from aquatic environments. The application of a catalyst improves the total organic carbon removal during ozonation of pharmaceuticals in water. The aim of this study was to use MnO2-CuO/ γ-Al2O3 catalyst for ozonation of ibuprofen (5 mgL?1) and evaluate the effect of the presence of humic acid in the removal process. The presence of the catalyst increased the mineralization percentage of ibuprofen from 27% for noncatalytic ozonation to 55% in the presence of catalyst. The presence of humic acid increased noncatalytic mineralization by 10%. The reusability and stability of the catalyst, and its ability to adsorb reaction by-products were demonstrated.  相似文献   

20.
以硝酸解胶的工业拟薄水铝石SB粉溶胶为铝源、三嵌段共聚物P123为结构调节剂,采用溶剂蒸发诱导自组装法成功地制备了甲基蓝吸附性能显著增强的大孔径介孔γ-Al2O3。运用XRD、N2吸附-脱附、TEM和UV-Vis对比研究了水热预处理SB粉溶胶与否对产物结构、织构性质、形貌和甲基蓝吸附性能的影响。结果表明,所制备的大孔径介孔γ-Al2O3具有优异的甲基蓝吸附性能并满足Langmuir吸附等温式,吸附300 mg·L-1的甲基蓝溶液60 min和3000 mg·L-1的甲基蓝溶液150 min时,其平衡吸附量分别高达267、1500 mg·g-1,远高于同一条件下SB粉焙烧产物γ-Al2O3的平衡吸附量150、1080 mg·g-1;水热预处理能增加产物的比表面积并提高其对甲基蓝的吸附速率,但对其均匀的介孔结构和平衡吸附量无显著影响。本研究为介孔氧化铝用于废水中甲基蓝等染料的吸附提供了新的契机。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号