首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
为考察空气当量比、气化温度和流化速度等参数对气化气品质及各项指标的影响,在小型循环流化床气化实验装置上,开展了以麦秆为原料的空气气化实验研究。结果表明:空气当量比的增大会导致低位热值及冷煤气效率先升高后降低;在720℃及以下温度范围内,随着气化温度的提高,气化气低位热值及冷煤气效率相应提高,但由于麦秆所含碱金属含量较高,当气化温度达到750℃时容易发生团聚和结焦现象;流化速度的增大能够改善气化气质量但其促进作用有限;在实验工况范围内,当空气当量比为0.2,气化温度为720℃以及流化速度为1 m/s时,冷煤气效率较高。  相似文献   

2.
温度对中试规模的喷动流化床煤部分气化行为的影响   总被引:1,自引:0,他引:1  
在构建的热输入2MW的中试规模加压喷动流化床部分气化试验装置上,对徐州烟煤的加压部分气化行为进行了研究.重点考察了气化温度对煤气成分、煤气热值、碳转化率和煤气产率等气化指标的影响.研究结果表明,煤气各组分的浓度,特别是甲烷浓度对气化温度非常敏感,碳转化率和煤气产率随温度的升高而增加,在试验的温度区间内,温度对煤气热值影响不大.部分气化炉所产生的煤气和半焦的热值均满足第二代增压流化床联合循环发电系统的要求.  相似文献   

3.
在热输入0.1MW的加压喷动流化床煤部分气化炉上以空气和水蒸气为气化剂,进行徐州烟煤的加压部分气化试验。考察了气化温度、压力等因素对煤气成分、煤气热值、干煤气产气率、碳转化率等指标的影响。气化温度是通过调整空气系数来实现的。试验结果表明:气化温度对煤气化过程影响显著,气化温度升高,煤气热值先增大后减小,产气率增加,碳转化率提高。而增大压力,床内气体速度变慢,延长了气化剂在床内的停留时间,另外压力增加改善了床内的流化质量,从而提高了气化效率,改善了煤气质量。  相似文献   

4.
生物质流态化催化气化技术工程化研究   总被引:16,自引:0,他引:16  
在研究开发的内循环锥形流态化气化炉内。对稻草、麦草等软秸秆物料粉碎后,或者直接使用木屑等细粉状原料,进行了热解气化和催化气化的工程化应用试验研究。研究结果表明:气化反应在600—820℃的一个较宽温度范围内,均能稳定连续运行。麦草原料气化所产生的煤气热值比稻草和稻壳都高,其热值可达7716kJ/m^3。木屑气化所产生煤气热值最高则达9064kJ/m^3,远远高于一般生物质气化煤气。对流化床气化来讲,即使在非催化气化条件下,其气化产生的煤气热值比采用下吸式气化炉产生的煤气热值提高40%左右,并且气化温度较固定床(上吸式、下吸式)气化炉低。同时进行的催化气化试验发现,催化剂CaO能明显提高煤气热值、降低CO组分,Na2CO3催化气化能提高气体H2的含量。在800℃试验时,添加催化剂能明显提高气体的热值。  相似文献   

5.
在10 MW级生物质气化耦合燃煤发电工程项目上,考察了当量比、添加蒸汽、掺混秸秆对稻壳气化特性的影响。在当前的实验条件下,随着当量比在0. 14~0. 20的范围内增加时,CO、H_2和CH_4的体积分数均随之减少,燃气热值和气化效率也随当量比的增大而降低;添加适量蒸汽可以促进CO、H_2和CH_4及燃气热值的提高,气化效率则随蒸汽量的增加而升高;当秸秆掺混比例逐渐增加时,CO、H_2和CH_4的体积分数和燃气热值出现了不同程度的下降,气化效率也不断降低。  相似文献   

6.
针对国内大部分中小型工业炉窑采用传统直燃煤工艺引发的能源和环境等问题,自行开发设计了煤高温气化与高温贫氧燃烧一体化系统。介绍了该系统的工艺路线和热工特性,应用实验研究和数学模拟相结合的方法,研究了一体化系统的煤气化及燃烧特性。研究结果表明:提高空气气化剂温度,可降低空煤比,提高煤气热值、气化效率和气化强度;当空气气化剂温度从常温提高到1050℃时,煤气热值将提高33%,空煤比减小43%,气化强度提高近一倍;提高助燃空气温度,将使燃气加热炉内的火焰容积扩大,炉温分布趋于均匀,热效率显著增加,NOx生成浓度大幅度降低。该系统与常温煤气化炉和换热式轧钢加热炉系统相比,系统热效率将提高一倍以上,单位产品能耗降低50%。  相似文献   

7.
提出了一种生物质高温气化的新方法。选取木屑为气化物料,在700℃、800℃和1000℃分别进行高温气化实验。实验表明:高温气化有利于提高合成燃气热值,强化气化反应;合成燃气中CO2和CxHy的含量度热值随温度的变化规律与理论结果基本吻合,热值达到6.19MJ/m^3。证实了生物质高温气化技术的可行性。  相似文献   

8.
基于ASPEN PLUS模拟生物质气流床气化工艺过程   总被引:4,自引:1,他引:4  
基于ASPEN PLUS模拟平台,对热解后半焦气化与生物质原料直接气化分别进行了模拟计算,得出如下结论:热解方法作为生物质气流床气化工艺的前处理手段是可行的。热解终温为300℃时对气流床气化是最合适的;O/C摩尔比在0.9~1.1之间比较合适;气化温度和碳转化率随着O/C摩尔比的增加而升高;对于300℃半焦进行气化,空气温度预热到550℃比较合适,气化温度可达到1056℃,煤气热值可达到5958kJ/Nm~3,碳转化率也可达到99.59%。  相似文献   

9.
中型流化床中的生物质气化实验研究   总被引:13,自引:0,他引:13  
以空气为气化介质,在中型流化床反应器上进行了生物质(木屑)气化实验研究。考察了当量比ER(0.20~0.34)、气化温度(670~820℃)对气化结果的影响,初步探讨加入二次风对气化的影响。在实验研究的条件范围内,煤气热值在5650~6665kJ/m3范围内变化,生物质产气率在1.51~2.26m3/kg之间变化,碳转化率在74.3%~90.8%之间变化,气化效率达到61.8%~78.1%;加入适量二次风可以提高气化效率和碳转化率,减少焦油含量。实验结果表明:此流化床气化炉当气化温度在720~770℃之间,当量比ER在0.24~0.28之间时,气化效果最好,此时煤气热值可达到6400~6600kJ/m3,产气率为1.75~1.95m3/kg,碳转化率为83%~89%,气化效率高达71%以上。  相似文献   

10.
空气当量比对稻壳旋风气化的影响   总被引:1,自引:0,他引:1  
稻壳旋风空气气化就是以稻壳为物料,以空气为载体,通过组织旋风气固流场来完成生物质气化的过程.通过对旋风气化反应过程的温度监测和气化产品气的成分分析可知:在稻壳旋风气化过程中,随着空气当量比ER的增大,物料入口温度降低、氧化区温度提高、产品气出口温度提高,气化燃气中的主要可燃成分中CO和CH4而降低、H2则在一定范围内增加、燃气热值降低,燃气中焦油的含量减少.经过比较和优化,本文认为稻壳旋风空气气化最佳空气当量比为0.25~0.26.  相似文献   

11.
Gasification process is being developed to produce a clean and efficient gas flue from fuels such as coal, biomass, and solid/liquid wastes for power generation. In this work, a biomass gasification kinetic model that can predict reaction temperature, gasification performance, and gas composition has been developed for a circulating fluidized bed (CFB). Experimental data from a CFB power plant have been used to validate the model. It is confirmed that the addition of steam is important for increasing the hydrogen concentration and syngas caloric value. Based on the predicted results, an optimal condition is suggested for air and steam gasification in the CFB gasifier.  相似文献   

12.
The characteristics of syngas evolution during pyrolysis and gasification of waste rubber have been investigated. A semi-batch reactor was used for the thermal decomposition of the material under various conditions of pyrolysis and high temperature steam gasification. The results are reported at two different reactor temperatures of 800 and 900 °C and at constant steam gasifying agent flow rate of 7.0 g/min and a fixed sample mass. The characteristics of syngas were evaluated in terms of syngas flow rate, hydrogen flow rate, syngas yield, hydrogen yield and energy yield. Gasification resulted in 500% increase in hydrogen yield as compared to pyrolysis at 800 °C. However, at 900 °C the increase in hydrogen was more than 700% as compared to pyrolysis. For pyrolysis conditions, increase in reactor temperature from 800 to 900 °C resulted in 64% increase in hydrogen yield while for gasification conditions a 124% increase in hydrogen yield was obtained. Results of syngas yield, hydrogen yield and energy yield from the rubber sample are evaluated with that obtained from woody biomass samples, namely hard wood and wood chips. Rubber gasification yielded more energy at the 900 °C as compared to biomass feedstock samples. However, less syngas and less hydrogen were obtained from rubber than the biomass samples at both the temperatures reported here.  相似文献   

13.
A kinetic model of algae gasification for hydrogen production with air and steam as gasification agent and was developed. The developed model was based on kinetic parameters available in the literature. The objective was to study the effect of critical parameters such as reaction temperature, stoichiometric ratio (SR) and steam flow rate (SFR) on H2/CO ratio in the syngas, hydrogen yield, and lower heating value (LHV) of the produced syngas. Model formulation was validated with experimental results on air-steam gasification of biomass conducted in an atmospheric fluidized bed gasifier. The results showed that higher temperature contributed to lower H2/CO, while higher SFR resulted in higher H2/CO. The LHV of producer gas increased with SFR and gasification temperature.  相似文献   

14.
Biomass gasification is a prevailing approach for mitigating irreversible fossil fuel depletion. In this study, palm empty fruit bunch (EFB) was steam-gasified in a fixed-bed, batch-fed gasifier, and the effect of four control factors—namely torrefaction temperature for EFB pretreatment, gasification temperature, carrier-gas flow rate, and steam flow rate—on syngas production were investigated. The results showed that steam flow rate is the least influential control factor, with no effect on syngas composition or yield. The gasification temperature of biomass significantly affects the composition of syngas generated during steam gasification, and the H2/CO ratio increases by approximately 50% with an increase in temperature ranging from 680 °C to 780 °C. The higher H2/CO ratio at a lower gasification temperature increased the energy density of the combustible constituents of the syngas by 3.43%.  相似文献   

15.
Hydrogen and syngas production from sewage sludge via steam gasification   总被引:1,自引:0,他引:1  
High temperature steam gasification is an attractive alternative technology which can allow one to obtain high percentage of hydrogen in the syngas from low-grade fuels. Gasification is considered a clean technology for energy conversion without environmental impact using biomass and solid wastes as feedstock. Sewage sludge is considered a renewable fuel because it is sustainable and has good potential for energy recovery. In this investigation, sewage sludge samples were gasified at various temperatures to determine the evolutionary behavior of syngas characteristics and other properties of the syngas produced. The syngas characteristics were evaluated in terms of syngas yield, hydrogen production, syngas chemical analysis, and efficiency of energy conversion. In addition to gasification experiments, pyrolysis experiments were conducted for evaluating the performance of gasification over pyrolysis. The increase in reactor temperature resulted in increased generation of hydrogen. Hydrogen yield at 1000 °C was found to be 0.076 ggas gsample−1. Steam as the gasifying agent increased the hydrogen yield three times as compared to air gasification. Sewage sludge gasification results were compared with other samples, such as, paper, food wastes and plastics. The time duration for sewage sludge gasification was longer as compared to other samples. On the other hand sewage sludge yielded more hydrogen than that from paper and food wastes.  相似文献   

16.
This paper presents the thermodynamic assessment of biomass steam gasification via interconnected fluidized beds (IFB) system. The performance examined included the composition, yield and higher heating value (HHV) of dry syngas, and exergy efficiencies of the process. Two exergy efficiencies were calculated for the cases with and without heat recovery, respectively. The effects of steam‐to‐biomass ratio (S/B), gasification temperature, and pressure on the thermodynamic performances were investigated based on a modified modeling of the IFB system. The results showed that at given gasification temperature and pressure, the exergy efficiencies and dry syngas yield reached the maximums when S/B was at the corresponding carbon boundary point (S/BCBP). The HHV of the dry syngas continuously decreased with the increase of S/B. Moreover, the exergy efficiency with heat recovery was averagely a dozen percentage points higher than that without heat recovery. Under atmospheric conditions, lower gasification temperature favored the yield and HHV of dry syngas at various S/B. In addition, it also favored the exergy efficiencies of the process when S/B is approximately larger than 0.75. Under pressurized conditions, higher gasification pressure favored both the yield and HHV of dry syngas, as well as the exergy efficiencies at different S/B. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Gasification is a thermochemical process to produce a clean syngas with low emissions and high caloric value (4.0–22.0 MJ/N m3) compared to other thermal processes. In this research work, an Aspen Plus/Icarus model used to evaluate the techno-economic aspects of gasification process to convert the biomass particles into syngas. Results showed as the plant size increases the DCFROR and ROI increases; however, a reverse impact obtained for PBP. It is also found the gasification of small-size particles plays a major role in the process; smaller particle size is affordable compared to the larger particle size. Although the present model used for techno-economic evaluation of biomass gasification, it can be used as a general model to study the economic aspects of gasification process for other feedstocks such as oil, coal, and municipal solid wastes.  相似文献   

18.
Characteristics of cardboard and paper gasification with CO2   总被引:1,自引:1,他引:0  
I. Ahmed  A.K. Gupta   《Applied Energy》2009,86(12):2626-2634
Evolutionary behavior of syngas chemical composition and yield have been examined for paper and cardboard at three different temperatures of 800, 900 and 1000 °C using CO2 as the gasifying agent at constant flow rate. Specifically the evolution of syngas chemical composition with time has been investigated. Pyrolysis of the sample was dominant at the beginning of the gasification process as observed from the high initial devolatilization of the sample followed by char gasification of material to form syngas for a long period of time. Results provided the role of gasification temperature on kinetics of the CO2 gasification process. Increase in gasification temperature provided increased conversion of the sample material to syngas. Thus the sample conversion to syngas was low at the low temperature of 800 °C while at elevated temperatures of 900 and 1000 °C substantial enhancement of the kinetics process occurred. The evolution of extensive reaction rate of carbon-monoxide was calculated. Results show that increase in temperature increased the extensive reaction rate of carbon-monoxide. The global behavior of syngas chemical composition examined at three different temperatures revealed a peak in concentration of H2 to exhibit after few minutes into the gasification that changed with gasification temperature. At 800 °C gasification temperature peak in H2 was displayed at 3 min into gasification while it decreased to only 2 min, approximately, at gasification temperatures of 900 and 1000 °C. The effect of reactor temperature on CO mole fraction has also been examined. Increase in the gasification temperature enhances the mole fraction of CO yields. This is attributed to the increase in forward reaction rate of the Boudouard reaction (C+CO22CO). The results show important role of CO2 gas for the gasification of wastes and low grade fuels to clean syngas.  相似文献   

19.
This study presents the effect of particle agglomeration on syngas emission during the biomass air gasification process. Various operating conditions such as operating temperature, equivalence ratio (ER), and amount of bed materials are employed. The concentrations of H2 and CO increase along with the operating time as agglomeration begins, while CO2 decreases at the same time. However, there is no significant change in the emission concentration of CH4 during the defluidization process. The lower heating value increases while the system reaches the agglomeration/defluidization under various operating parameters. When the system reaches the agglomeration/defluidization process, the LHV value sharply increases. The results are obtained when the system reaches agglomeration/defluidization. The temperature increases while bed agglomeration occurs. A higher temperature increases the production of H2 and CO, contributing to the LHV calculation.  相似文献   

20.
Main characteristics of gaseous yield from steam gasification have been investigated experimentally. Results of steam gasification have been compared to that of pyrolysis. The temperature range investigated were 600–1000 °C in steps of 100 °C. Results have been obtained under pyrolysis conditions at same temperatures. For steam gasification runs, steam flow rate was kept constant at 8.0 g/min. Investigated characteristics were evolution of syngas flow rate with time, hydrogen flow rate and chemical composition of syngas, energy yield and apparent thermal efficiency. Residuals from both processes were quantified and compared as well. Material destruction, hydrogen yield and energy yield is better with gasification as compared to pyrolysis. This advantage of the gasification process is attributed mainly to char gasification process. Char gasification is found to be more sensitive to the reactor temperature than pyrolysis. Pyrolysis can start at low temperatures of 400 °C; however char gasification starts at 700 °C. A partial overlap between gasification and pyrolysis exists and is presented here. This partial overlap increases with increase in temperature. As an example, at reactor temperature 800 °C this overlap represents around 27% of the char gasification process and almost 95% at reactor temperature 1000 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号