首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 781 毫秒
1.
针对东南亚沿海地区使用的大型轧钢机拉杆(材料为42CrMo钢)易发生腐蚀磨损的问题,采用单热源脉冲离子渗氮炉对拉杆进行氮碳共渗+后氧化复合处理。通过对模拟试样的预氧化工艺、氮碳共渗工艺及后氧化工艺的研究,得到了满足产品要求的复合处理工艺:350℃×2 h预氧化;550℃×24 h氮碳共渗(炉压为260 Pa, NH3∶CO2=20∶1)和520℃×2 h氮氧共渗(炉压为300 Pa, NH3∶O2=6∶1),共渗完毕,关闭电源,同时以0.5 L/min向炉内通入空气,直至炉温降到300℃,打开炉盖,待试样冷至150℃左右,迅速在试样表面均匀涂上防锈油。在此复合工艺下,渗层深度达到0.39~0.41 mm,化合物层达到10~12μm,与同工艺无预氧化试样渗层及化合物层厚度相比均增加;经盐雾试验检测,试样在70 h后出现腐蚀斑,和只经氮碳共渗处理无后氧化处理相比,耐蚀性提高。  相似文献   

2.
H13钢试样经真空热处理后,分别对其进行渗氮和碳氮硫共渗处理,然后浸入700 ℃高温熔融铝液中进行腐蚀试验,并对腐蚀前后试样的截面组织形貌、质量损失及相成分进行了详细分析。结果表明:渗氮试样与碳氮硫共渗试样的渗层界面结合方式相似,渗层光滑致密,与基体分界较为平整。碳氮硫共渗试样的表面化合物区存在Fe3N、Fe2N、FeS、Fe3C相,其中FeS相是典型的密排六方晶体结构,且硬度较高;渗氮试样表面化合物区存在Fe3N、Fe2N相,渗层的表面硬度高于碳氮硫共渗试样。在相同的腐蚀条件下,真空热处理试样的质量损失为7.5 g,质量损失率为21.1%,渗氮试样的质量损失为4.1 g,质量损失率为11.2%,碳氮硫共渗试样的质量损失为0.8 g,质量损失率为2.2%。试样中的铁铝化合物呈锯齿状嵌入基体,厚度分别为184.75、88.56和35.88 μm;经铝液腐蚀后的主要化合物均为Fe2Al5,其中碳氮硫共渗试样由于S、C的加入,可与H13钢基体形成FeS和Fe3C,表现出最佳的耐高温铝液腐蚀性能。  相似文献   

3.
在NaCl溶液和甲酰胺组成的电解液中,应用液相等离子体电解氮碳共渗技术对调质态40Cr钢进行处理,表面得到氮碳共渗层,研究了其组织与性能。结果表明,经液相等离子体电解氮碳共渗处理后,试样表面为多孔形貌,处理10 min后渗层厚度可达38μm,渗层由两层白亮层和过渡层组成。XRD分析表明外白亮层由ε-Fe2-3N、Fe5C2、Fe3C和α-Fe(N)马氏体组成,SAED分析证明内白亮层为α-Fe(N)马氏体。渗层的显微硬度最高可达650 HV0.05,经氮碳共渗处理后试样的腐蚀速率远小于40Cr钢基体的腐蚀速率。  相似文献   

4.
采用氮碳氧复合处理(QPQ)技术对耐蚀耐热不锈钢MPS700A钢进行表面改性,分别进行(450~500) ℃×5 h和(550~570) ℃×3 h盐浴氮碳共渗试验,氧化处理工艺均为400 ℃×30 min。对QPQ处理后试样渗层的表面形貌、表面硬度、脆性及其耐磨性进行了分析。结果表明:渗层主要由氧化膜层、疏松层、化合物层和扩散层构成,QPQ处理后试样的硬度明显提高,相对低温段490 ℃盐浴氮碳共渗试样的硬度最高,相对高温段550 ℃处理的试样硬度最高,分别为1295、1344 HV0.1,分别是基体硬度的3.75和3.90倍。QPQ处理试样的渗层组织细小,均匀致密,脆性低,耐磨性好,比祼钢具有较好的高温摩擦磨损性能,尤其在500 ℃以上性能更加优异。且与550 ℃盐浴氮碳共渗QPQ试样相比,490 ℃盐浴氮碳共渗QPQ试样具有更低的脆性,更好的高温摩擦磨损性能。  相似文献   

5.
利用等离子体电解渗技术,在TC4钛合金表面制备了等离子体电解氮碳共渗(PEN/C)层.用X射线和扫描电镜分析了渗层的成分和结构特征;用动电位极化曲线和电化学阻抗谱分析PEN/C渗层在3.5%的NaCl溶液中的电化学腐蚀行为和耐蚀性.结果表明在钛合金表面形成的PEN/C渗层为多孔状Ti(C,N),它提高了基体的腐蚀电位,增大了电荷转移电阻,减小了腐蚀电流密度.PEN/C渗层提高了钛合金基体的耐蚀性.  相似文献   

6.
《铸造技术》2015,(12):2861-2866
对球墨铸铁和灰铸铁铸造曲轴试样调质预处理,制备成圆片状试样,预磨抛光处理后,进行离子碳氮共渗工艺处理,加热至570℃保温6 h炉冷至室温,制备成碳氮共渗试样,对共渗前后试样做金相和磨损性能试验结果表明:试样共渗后表层有明亮层,渗层厚度为120~210μm,硬度明显增加;试样共渗后表面硬度的显著提高,对耐磨损性能有较大的改善。对比试验结果证明:离子碳氮共渗后铸铁耐磨性有所提高,球墨铸铁比灰铸铁耐磨损性能有较大改善,提高显著。  相似文献   

7.
为提高AZ31B镁合金的表面硬度,改善其摩擦磨损性能及耐蚀性能,采用盐浴碳氮钒共渗工艺在AZ31B镁合金表面形成高硬度碳、氮化合物渗层,并用数字显微硬度计、光学显微镜、X射线衍射仪、X射线能谱仪、摩擦磨损试验和电化学测试分析渗层表面硬度、截面显微形貌、渗层表面物相组成、耐磨性和耐蚀性等。结果表明,盐浴碳氮钒共渗处理使AZ31B镁合金表面形成主要由VC、VN等高硬度金属化合物组成的渗层,渗层表面硬度最高达到283.1 HV0.05,相比原始试样和碳氮共渗处理试样分别提升280%和62%;相比原始试样,碳氮钒共渗试样的摩擦因数和磨损量分别降低约30%和50%,自腐蚀电位提高60 mV,自腐蚀电流密度降低一个数量级,表明盐浴碳氮钒共渗工艺能够显著提高AZ31B镁合金的表面硬度,提升其摩擦磨损性能及耐蚀性能。  相似文献   

8.
在β相变点以下,通过空心阴极等离子体辉光放电技术,在Ti6Al4V合金表面形成W-Mo共渗层来提高钛合金基体在还原性酸中的耐蚀性。分别利用扫描电子显微镜、能谱仪和X射线衍射仪对试样的表面形貌、成分分布和相组成进行分析。结果显示在Ti6Al4V合金表面形成一层约23μm厚,由AlMoTi2 和 TixW1-x物相组成的共渗层。利用电化学工作站,在常温静态条件下,对试样在还原性酸(硫酸和盐酸)中进行耐蚀性研究。结果表明,经过共渗处理的试样在还原性酸中,能保持稳定的腐蚀电位并且其腐蚀电流密度仅为原始试样的1/10 和 1/6。此外,相较于钛合金基体,处理后的试样表面没有发现腐蚀产物和裂纹,表明没有腐蚀脱落现象发生。因此,在保证基体基本性能的前提下,钛合金试样的耐蚀性能明显提高。  相似文献   

9.
在β相变点以下,通过空心阴极等离子体辉光放电技术,在Ti6Al4V合金表面形成W-Mo共渗层来提高钛合金基体在酸性溶液中的耐蚀性。分别利用扫描电子显微镜、能谱仪和X射线衍射仪对试样的表面形貌、成分分布和相组成进行分析。结果显示在Ti6Al4V合金表面形成一层约23μm厚,由AlMoTi_2和Ti_xW_(1-x)物相组成的共渗层。利用电化学工作站,在常温静态条件下,对试样在酸性溶液中进行耐蚀性研究。结果表明,经过共渗处理的试样在酸性溶液中,能保持稳定的腐蚀电位并且其腐蚀电流密度仅为原始试样的1/10和1/6。此外,相较于钛合金基体,处理后的试样表面没有发现腐蚀产物和裂纹,表明没有腐蚀脱落现象发生。因此,在保证基体基本性能的前提下,钛合金试样的耐蚀性能明显提高。  相似文献   

10.
研究了不同温度对AerMet100钢渗氮层和氮碳共渗层的显微组织、表面硬度、渗层截面硬度梯度以及耐磨性的影响,并考察了渗层的磨损机理。结果表明,氮碳共渗层相较于渗氮层表面生成的化合物更加细小,表面更加平整光滑;离子渗氮、离子氮碳共渗处理都可显著提高AerMet100钢的表面硬度;随着温度的增加,共渗层厚度也明显增加;氮碳共渗层比渗氮层具有更低的摩擦因数,在共渗温度为480 ℃时氮碳共渗试样具有最低摩擦因数和磨损率,表现出最佳的耐磨性。渗氮层的磨损机理为氧化磨损和表面疲劳磨损,氮碳共渗层的磨损机理为氧化磨损、磨粒磨损以及表面疲劳磨损。  相似文献   

11.
对TA1纯钛进行了离子碳氮共渗。用扫描电镜对离子碳氮共渗的TA1纯钛改性层进行了观察。用X射线衍射仪测定了改性层的物相。用能谱仪对改性层作成分分析。用显微硬度计测定改性层的硬度。用SRV摩擦磨损试验机测定摩擦系数,在往复式磨损试验机上进行,磨损试验。结果表明,经离子碳氮共渗的TA1纯钛表面获得了金黄色、均匀的Ti2N/TiN改性层,显微硬度为840HV0.01。碳氮共渗表面改性层能明显提高纯钛TA1的耐磨性。  相似文献   

12.
为提高钛基双极板的耐腐蚀性能和导电性,在TA2纯钛的表面进行双辉离子渗碳,另外为降低渗碳温度,在渗碳过程中掺杂钒。使用扫描电镜和能谱分析、X射线衍射对改性层的组织结构、化学成分、物相组成进行研究,并测得改性层的界面接触电阻率、耐腐蚀性能。结果表明,在优化的制备工艺参数下,在TA2表面生成结构致密的TiC改性层、钒掺杂渗碳改性层。当压实力为140 N/cm2时,730℃下制备的钒掺杂渗碳改性层、850℃下制备的TiC改性层、TA2基体的界面接触电阻率分别是1.17、3.66、14.71 mΩ/cm2。在模拟双极板的工作环境中,测得730℃下制备的钒掺杂渗碳改性层、850℃下制备的TiC改性层的自腐蚀电流密度分别是5.238、7.563μA/cm2,均比TA2基体的腐蚀电流密度低1个数量级。在离子渗碳的过程中掺杂钒可以有效降低渗碳的工艺温度,并且提高TA2基体的导电性和耐腐蚀性能。  相似文献   

13.
汽车发动机用AZ91D合金的表面喷涂与性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用热喷涂工艺在压铸态AZ91D合金表面制备了Al涂层,研究了热处理温度和保温时间对AZ91/Al涂层界面组织形貌的影响,并对比分析了扩散层的耐腐蚀性能和耐磨性能。结果表明,热处理前Al涂层与基材为机械结合,热处理后Al涂层与AZ91合金基材的界面处可形成冶金结合扩散层,且随着保温时间延长,扩散层厚度不断增加;热处理温度在375 ℃以下时扩散层主要由β-Mg17Al12相构成,375 ℃×8 h热处理后为α-Mg+β-Mg17Al12相,425 ℃×1 h热处理后为γ-Mg2Al3和β-Mg17Al12相。AZ91合金基材和扩散层腐蚀电位从高至低顺序为γ>β>α+β>AZ91合金基材,扩散层的腐蚀电流密度均低于AZ91合金基材,阻抗谱图中容抗弧半径从大至小顺序为γ>β>α+β>AZ91合金基材,扩散层的耐腐蚀性能均优于AZ91合金基材;γ、β和α+β扩散层的摩擦稳定性系数都高于AZ91合金基材,而磨损速率和磨痕宽度都要小于AZ91合金基材,其中β扩散层的磨损速率和磨痕宽度最小,具有最佳的抵抗磨损的能力。  相似文献   

14.
罗强  王理  陈新  刘思维 《轻金属》2012,(2):56-59
研究了TA16和TA17钛合金在高温高压中性水质中的电化学行为、均匀腐蚀行为和应力腐蚀行为.结合SEM和XPS分析技术,分析了腐蚀后合金表面形貌和氧化膜的组成.研究结果表明:在高温高压中性水质中,两种钛合金具有很好的耐腐蚀性能,TA16钛合金的钝化性能、抗均匀腐蚀和抗应力腐蚀性能均优于TA17合金,腐蚀后两种钛合金表面生成了表层由TiO2组成、内层由TiO2、Ti2 O3和TiO组成的致密氧化膜.  相似文献   

15.
热氧化对TA2耐磨和耐蚀性能的影响   总被引:1,自引:0,他引:1  
选取TA2工业纯钛为研究对象进行热氧化处理,研究热氧化处理后试样表层物相构成、显微硬度、耐磨性和在浓盐酸中的耐腐蚀性。结果表明,热氧化后TA2表面形成了金红石型TiO2氧化膜,TiO2氧化层厚度随热氧化温度升高而增加;表层显微硬度随热氧化温度升高而提高。热氧化使TA2耐磨性和在36%~38%浓盐酸中耐腐蚀性明显改善,其中700℃为改善TA2耐磨性和耐蚀性的最佳热氧化工艺。  相似文献   

16.
采用盐浴渗氮的化学热处理方法对FeCrMnNiAl0.2Ti0.1高熵合金进行表面强化,主要工艺为预热+盐浴渗氮+氧化,研究渗氮温度对渗层和性能的影响。采用光学显微镜、扫描电镜、X射线衍射仪研究不同渗氮温度下高熵合金的组织结构和物相,利用显微硬度计和W-2000摩擦磨损试验机分别测量硬度和耐磨性。结果表明,经过盐浴渗氮后,高熵合金表面形成含氮化物和氧化物的复合渗层,渗氮层深度最高为27.1 μm,硬度最高可达1080.0 HV0.2。盐浴渗氮可以有效提高高熵合金的耐磨性,改善摩擦学行为,640 ℃渗氮试样的磨损率仅为0.025 mm3/(N·m),与铸态相比降低了约76.7%。  相似文献   

17.
目的通过制备渗硼涂层,提高新型β-钛合金的耐腐蚀性能。方法采用固体粉末包埋法,在空气及氮气气氛中,选取不同的渗硼温度,在Ti-33Nb-4Sn(简称334钛合金)表面渗硼。对比分析涂层的表面、断面形貌,总结渗硼涂层的生长规律。利用电化学测试方法,测定334钛合金制备渗硼涂层前后,在3.5%NaCl溶液中的电化学腐蚀性能。结果在不同的制备条件下,都能在新型β-钛合金表面形成一层致密、连续的渗硼层。该涂层为双层结构,由致密的外涂层和针须状的过渡层组成。在相同气氛下制备的涂层,随着渗硼温度的升高,致密外涂层厚度增加。在氮气气氛下制备的涂层致密外涂层的厚度,大于同温度下在空气中制备的涂层。基体经过不同条件渗硼处理后,开路电位都明显提高。334钛合金基体的自腐蚀电位为0.6692 V,腐蚀电流密度为2.356μA/cm^2。在空气中经过900、950、1000℃温度渗硼后,自腐蚀电位分别为1.0993、0.7221、0.7639 V,腐蚀电流密度分别为3.377、2.274、1.584μA/cm^2。在氮气中经过900、950、1000℃温度渗硼后,自腐蚀电位分别为0.8617、0.6804、0.8143 V,腐蚀电流密度分别为1.358、1.445、1.525μA/cm^2。结论渗硼涂层可提高334钛合金的耐腐蚀性能,氮气气氛下制备涂层的耐腐蚀性能明显优于空气气氛。  相似文献   

18.
目的提高TA2在草酸溶液中的耐蚀性,揭示表面充氢提高钛在草酸溶液中耐腐蚀性能的机理。方法采用电化学充氢的方法对TA2试样进行表面充氢,采用SEM和XRD分析充氢对试样表面形貌和相组成的影响,并采用电化学测试和腐蚀浸泡实验研究不同充氢时间的TA2试样在草酸溶液中的耐蚀性。结果电化学充氢后,TA2试样表面会生成一层以Ti H1.5为主要组成相的氢化钛层,该氢化钛层的厚度随充氢时间的延长而增厚。电化学测试结果显示,随着充氢时间的延长,TA2试样在草酸溶液中的自腐蚀电位从–0.7 V(vs.SCE)逐渐增加到0 V左右,腐蚀倾向显著下降;极化电阻Rp则从0.2 kΩ·cm^2逐渐增加到了24.1 kΩ·cm^2,耐蚀性能增强。腐蚀浸泡实验结果表明,随着充氢时间的延长,TA2试样在草酸溶液中的腐蚀程度逐渐减弱,腐蚀速率也从未充氢时的4.63mm/a逐渐下降到0.03mm/a。结论在草酸溶液中,电化学充氢TA2试样表面生成的氢化钛层对Ti基体具有保护作用,并且保护效果随氢化钛层的增厚而增强。试样表面氢化钛层对Ti基体的保护作用除了与成分有关外,还与其结构相关,完整致密的氢化钛层可以对Ti基体起到很好的保护作用,而疏松多孔的氢化钛不仅不能保护Ti基体,反而还会促进Ti基体的腐蚀。  相似文献   

19.
使用双辉等离子体渗金属技术,通过调整渗金属温度在钨表面制备了WTaTiVCr高熵合金层,使用扫描电镜(SEM)、X射线能谱分析(EDS)、X射线衍射(XRD)、显微硬度计、往复摩擦试验和电化学腐蚀试验等对其组织成分、力学性能、耐磨性和耐蚀性等进行了分析。结果表明:当渗金属温度为1150 ℃、源极与阴极电压差为400 V时,可以得到含有扩散层、沉积层的复合渗金属层,其中扩散层区域各元素的原子分数为W0.38Ta0.14Ti0.2V0.2Cr0.08,相结构为单相BCC结构,符合高熵合金层的相结构与元素组成规律。同时其表面硬度由于受到固溶强化、晶格畸变等强化机理,与纯钨相比有很大的提升,达到1300 HV0.2以上。另外,该渗金属层的平均摩擦因数为0.447,磨损率为3.43×10-8 mm3/(N·mm),腐蚀速率为3.87 mg/(m2·h),具备一定的耐磨性和耐蚀性。综合以上结果,通过双辉技术在钨表面制备的WTaTiVCr高熵合金层可以有效提高W基体的力学性能和耐腐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号