首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
采用非等温热重法对聚苯醚的热分解动力学进行研究,计算了反应活化能,采用积分法结合36种动力学函数来判断聚苯醚热分解的机理函数,得到了聚苯醚热动力学参数即反应的动力学函数,平均活化能(Ea)为211.64kJ/mol,指前因子(A)的平均值为6.24×107s-1,也获得了对应的热分解动力学方程。  相似文献   

2.
采用热重(TG)分析以不同的升温速率(5、10、15、20、30℃/min)分别在氮气气氛和空气气氛下对覆铜板中双氰胺固化环氧树脂热分解行为进行研究,根据TG曲线,采用Coats-Redfern和Ozawa热分析处理动力学数据的方法,计算环氧树脂热分解过程中的反应活化能E、反应级数n及频率因子A。结果表明,空气气氛下5%~30%的失重率下反应表观活化能在355.0~366.5 J/mol之间,频率因子A所对应的ln A值在4.987~6.810之间;氮气气氛下5%~30%的失重率下表观活化能在297.0~357.4J/mol之间,频率因子A所对应的ln A值在4.985~7.093之间;环氧树脂的热裂解反应和热氧化分解反应均为一级反应。研究发现,随着环氧树脂失重率的增加,氮气气氛下热分解活化能略有提高,而空气气氛下的活化能几乎不变。该研究为环氧树脂的热分解提供了重要的动力学参数。  相似文献   

3.
宗封琦  王平  顾浩 《化学世界》2007,48(10):598-599,602
用TG法研究了粉状聚苯乙烯磺酸钠阳离子交换树脂的热分解反应非等温动力学,测定了该反应的动力学基础数据。将树脂在390~500℃的热分解过程,用一个表观的热分解反应,并用相应的活化能和指前因子来表征。测得活化能:Ea=287±7 kJ/mol,指前因子:Za=(2.14±0.06)×1020/min(95%置信度)。  相似文献   

4.
采用固相接枝法制备了丙烯酸-2-羟乙酯(HEA)接枝低密度聚乙烯(PE-LD)共聚物(PE-LD-g-HEA),通过X射线衍射仪、傅里叶红外光谱仪分析了不同温度处理下PE-LD、PE-LD-g-HEA的结构变化,并用热重分析法研究了二者的热分解动力学。结果表明,热处理时PE-LD-g-HEA较PE-LD的结晶度变化小,主链断裂缓慢,热稳定性提高;Kissinger法和Crane法计算了PE-LD表观活化能为88.63 kJ/mol、指前因子1.17×106 s-1、反应级数为0.88,接枝产物的表观活化能为217.35 kJ/mol、指前因子5.92×1015 s-1、反应级数为0.95,Ozawa法计算的表观活化能值与Kissinger法相相近。  相似文献   

5.
腐殖酸热分解动力学   总被引:2,自引:1,他引:1       下载免费PDF全文
程亮  张保林  徐丽  侯翠红  刘国际 《化工学报》2014,65(9):3470-3478
采用热重分析法(DTA-TGA)研究了腐殖酸的热分解过程及其动力学,分析其DTA-TGA曲线可得:热分解反应发生在284.65~417.16℃; 用红外光谱(FT-IR)、核磁氢谱(1H NMR)、核磁碳谱(13C NMR)对腐殖酸结构进行表征,用Flynn-Wall-Ozawa(F-W-O)法、Kissinger法及Šatava-Šesták法计算出腐殖酸热分解反应的表观活化能为210.83 kJ·mol-1,指前因子对数为17.55;确定了其热分解反应的级数和动力学参数,且热分解反应机理为二级反应;腐殖酸在氮气氛围下维持1min寿命的最高使用温度为278℃;同时,计算出腐殖酸样品热力学参数焓变、熵变及摩尔自由能变分别为67.99 kJ·mol-1、-164.83 J·(mol·K)-1 和176.36 kJ·mol-1。  相似文献   

6.
以4-[3,5-双(4-氨基苯氧基)苯氧基]邻苯二甲腈和3,3′,4,4′-联苯四甲酸二酐为原料,经聚酰胺酸热酰亚胺化制备含氰基的聚酰亚胺(CN-BP-PI)薄膜。采用傅里叶变换红外光谱、热重分析、差示扫描量热法对CN-BP-PI薄膜进行了分析。采用动态热重法研究了CN-BP-PI的分解动力学,用积分法结合常见固相热分解反应动力学函数来判断热分解的动力学函数。由Ozawa,KAS,Kissinger,Achar,Coats-Redfern,MacCallum-Tanner,van Krevelen方程求热分解反应的动力学参数。转化率为0.2~0.8时所得CN-BP-PI在氮气中热分解反应的表观活化能为119.68~215.61 kJ/mol,平均活化能为136.35 kJ/mol,指前因子平均值为8.52×107 s-1。  相似文献   

7.
六氨氯化镁热解过程及其非等温动力学   总被引:2,自引:1,他引:1  
宋兴福  汪瑾  罗妍  刘够生  于建国 《化工学报》2008,59(9):2255-2259
利用热重(TG)分析技术对六氨氯化镁的热分解过程及动力学进行了研究,考察了六氨氯化镁在4、7、10、13、16 K·min-1线性升温速率和空气气氛下热分解机理,六氨氯化镁热解过程分为3个阶段。提出了一种整体优化的多升温速率迭代的等转化率求取活化能方法,采用该方法,得到六氨氯化镁热解3个阶段的活化能分别为51.38、64.70、73.55 kJ·mol-1。采用整体优化的多升温速率等温法确立了六氨氯化镁热解3个阶段的热解机理函数与指前因子:第1步反应的热解机理属于固体相边界反应机理(n=1/4),指前因子为3.281×105 s-1;第2步反应的热解机理属成核与生长机理(n=1.8),指前因子为5.624×106 s-1;第3步反应属化学反应机理(1.5级反应),指前因子为5.862×105 s-1。  相似文献   

8.
高岭土热分解动力学   总被引:3,自引:0,他引:3  
采用综合热分析仪在动态空气气氛条件下研究了高岭土的热分解过程,利用热重分析数据对高岭土的热分解过程进行了动力学分析.用迭代的等转化率方法获取了准确的活化能,将得到的活化能应用到Malek方法中推测其反应机理,并进一步求得了指前因子A.结果发现:高岭土在400~700℃脱去羟基过程遵循化学反应的模型,其微分和积分表达式分别为:f(α):(1-α)n,G(α)=1-(1-α)1-n/1-n(其中:α为转化率,反应级数n=2.1,表观活化能为182.428kJ/mol),指前因子A的范围为:(4.566~4.635)×1011s-1.  相似文献   

9.
用热分析的方法研究了二氯丙烯胺的热分解动力学,起始分解温度在120℃左右,并用无模式函数法计算出反应活化能、指前因子。  相似文献   

10.
通过热重分析(TGA)法研究了聚对苯二甲酸丁二醇酯(PBT)在氮气气氛中不同升温速率下的热分解过程,采用不同的动力学数据处理方法研究了PBT的热分解机理。结果表明:采用Kissinger法、FlynnWall-Ozawa法和Friedman法计算PBT的热分解反应活化能分别为179.93,175.83,161.07 kJ/mol,平均值为172.28 kJ/mol,与Coast-Redfern法计算的活化能180.41 kJ/mol接近,取PBT热分解反应活化能为180.41kJ/mol,计算得指前因子为2.68×10~(10)s~(-1);采用Coast-Redfern法和Criado法研究了PBT的固相热分解反应机理,认为PBT的热分解机理属于相边界控制的收缩圆柱体反应机理,反应级数为0.5。  相似文献   

11.
利用热重分析(TG)采用不同升温速率(10,15,20,25℃/min)分别在空气和氮气气氛下对聚酰胺固化环氧树脂热稳定性进行了研究.采用Coats-Redfem和Ozawa热分析处理动力学数据的方法,计算了环氧树脂热分解反应活化能E、反应级数n及频率因子A.求得空气气氛下5%~30%的失重率下反应表观活化能在70.3...  相似文献   

12.
通过热失重分析法(TG)研究了杯[4]芳烃与对叔丁基杯[4]芳烃在氮气氛围下的热稳定性,利用Kissinger方法和Flynn?Wall?Ozawa方法分析计算二者的热解表观活化能,通过Coats?Redfern方法确定了热分解动力学机理与模型,并分别求出了材料主降解阶段的非等温动力学方程。结果表明,Kissinger和Flynn?Wall?Ozawa方法求得的杯[4]芳烃的表观活化能分别为166.64 kJ/mol和175.79 kJ/mol,求得的对叔丁基杯[4]芳烃脱叔丁基过程的表观活化能分别为153.97 kJ/mol和166.81 kJ/mol,其自身苯环热分解过程的表观活化能分别为248.38 kJ/mol和252.92 kJ/mol,两物质的热性能在氮气氛围下都表现得较为稳定,且分解温度对于高分子材料的适应性较强;杯[4]芳烃热分解机理函数为g(α)=[-ln(1-α)]3/2,反应级数n=3/2,其非等温热分解机理属于随机成核和随后生长反应,对叔丁基杯[4]芳烃脱叔丁基过程的热分解机理函数为g(α)=[-ln(1-α)]2/3,反应级数n=2/3,其非等温热分解机理属于随机成核和随后增长反应,自身苯环热分解过程的热分解机理函数为g(α)=α2,反应级数n=2,其非等温热分解机理属于一维扩散反应。  相似文献   

13.
为了研制一种具有高能高燃速特性的新型发射药,在含有CL-20的高能发射药配方基础上,添加适量高燃速功能材料乙二胺-三乙烯二胺高氯酸盐(SY);利用热重分析法(TG)、差示扫描量热法(DSC)和绝热加速量热仪(ARC)研究了高燃速功能材料SY对高能发射药热分解反应的影响,并计算对比了热分解过程的相关动力学参数。结果表明,高燃速功能材料SY可以明显加快发射药的质量损失速率,使最大质量损失速率提高了43%,主要促进了NC组分的热分解;添加质量分数3%的SY可使高能发射药的绝热分解终止温度由790.4提高到1305.7℃,提高了515.3℃,且最终放热量由1294.72增至2335.22J/g,增加了1040.50J/g,热分解反应更完全;SY的加入降低了高能发射药热分解反应的表观活化能,利用Kissinger法和Ozawa法求得的活化能分别降低40.5和38.5kJ/mol。  相似文献   

14.
以B粉和BaCrO4为主要原料,制备不同配比的B/BaCrO4延期药。在N2氛围下,通过热重分析法(TG)和差示扫描量热法(DSC),在不同的升温速率下,对三组延期药的热分解过程进行研究,同时也对B粉和BaCrO4进行热分析。用Kissinger方程和Ozawa方程分别对实验结果进行计算,得出其活化能。结果表明:B/BaCrO4延期药的燃烧性能稳定,随B含量的增加,放热峰值逐渐降低,燃速加快。  相似文献   

15.
张丁然  卢林刚 《中国塑料》2021,35(11):104-110
在氮气氛围中,利用热失重分析方法对杯[6]芳烃与对叔丁基杯[6]芳烃的热解特性进行了研究,同时采用热分解动力学分析方法计算了反应过程对应的活化能以及最优机理函数方程。结果表明,对叔丁基杯[6]芳烃由于叔丁基的不稳定性导致其初始热分解温度同杯[6]芳烃相比提前约160 ℃,此之后的分解过程同杯[6]芳烃基本一致(即发生桥联的亚甲基断裂与母体苯环的热裂解),整体上残炭量杯[6]芳烃略高10 %;热解动力学分析表明,依据Kissinger和Flynn?Wall?Ozawa方法求出的杯[6]芳烃反应活化能分别是387.87 kJ/mol和376.28 kJ/mol,对叔丁基杯[6]芳烃脱叔丁基过程的化学反应活化能分别为223.56 kJ/mol和240.97 kJ/mol;依据Coats?Redfern方法求出杯[6]芳烃热解机理函数为gα)=[-ln(1-α)]2/5,反应级数n=2/5,对应非等温热解机理为随机成核和随后生长反应,对叔丁基杯[6]芳烃脱叔丁基过程的热解机理函数为gα)=[-ln(1-α)]1/2,反应级数n=1/2,对应非等温热解机理为随机成核和随后生长反应。  相似文献   

16.
在不同升温速率下,利用热重分析法研究了聚酰胺12(PA12)在氮气氛围中的热分解动力学。运用Freeman Carroll、Kissinger、Ozawa、Achar和Coats Redfern方法计算和确定了PA12在氮气氛围中的热分解活化能和热分解机理及其模型。结果表明,在氮气氛围中,PA12的热分解活化能为246.5 kJ/mol,指前因子为1014.71;PA12热分解机理为收缩球体法则,机理方程的微分形式为f(α)=3(1-α)2/3,积分形式为G(α)=1-(1-α)1/3。  相似文献   

17.
利用C80微量量热仪对不同浓度过氧化氢在空气气氛中的热分解进行实验研究。通过热分析研究得到了不同扫描速率对过氧化氢热分解的影响以及热分解的活化能、绝热条件下达到最大反应速率所需的时间(TMRad)。 结果表明,随着扫描速率的提高各浓度过氧化氢的初始放热温度和最大放热温度都升高;质量分数为27.5%、50%、70%的过氧化氢热分解的活化能范围分别为51.05~94.30、16.40~66.72、32.50~76.15 kJ/mol;环境温度最高40 ℃下各浓度过氧化氢对应的TMRad分别为26.16、6.74、5.73 h。  相似文献   

18.
以热重-差热法(TG-DTG)为手段,研究配合物[Co(phendione)(SO4)(H2O)]·5H2O非等温热分解过程动力学.结果表明,标题配合物第一阶段热分解为相界控制反应(三维)机理,表观活化能为59.85KJ·mol-1,指前因子InA为16.36,反应速率方程为dα/dt=Ae-E(1-α)<2/3>.第...  相似文献   

19.
利用液相法合成了[NH3CH2CH2NH3][CuCl4],并对化合物的热稳定性、热分解及其动力学进行了研究。采用TG-DTG技术研究化合物[NH3CH2CH2NH3][CuCl4]的热分解,并应用微分法(Achar法)、Coast-Redfern法、Kissinger法、Ozawa法对非等温动力学数据进行处理,发现晶体的第一步分解是二维扩散反应,n=2,机理函数积分形式g(α)=[1-(1-α)1/2]2和微分形式f(α)=(1-α)1/2[1-(1-α)1/2]-1,表观活化能Ea=192.56 kJ.mol-1,指前因子A=2.13×1016s-1。标题化合物的第二步分解是化学反应,机理函数积分形式g(α)=(1-α)-1-1和微分形式f(α)=(1-α)2,表观活化能Ea=164.70 kJ.mol-1,指前因子A=2.90×1012s-1。  相似文献   

20.
运用热失重分析法对杯[8]芳烃和对叔丁基杯[8]芳烃氮气氛围下的热解状况与热解机理进行了探究,同时采用热分解动力学方法求解了二者热解过程对应的反应活化能和最优的机理函数方程。结果表明,对叔丁基杯[8]芳烃由于结构中的C—H σ键以及 C=C π键的强相互作用力,整体结构更为稳定,杯[8]芳烃具备优良的成炭性能,对叔丁基杯[8]芳烃具备优良的热稳定性能,二者的分解温度对于高分子材料的适应性较强;依照Kissinger方法和Flynn?Wall?Ozawa计算的杯[8]芳烃的反应活化能分别为179.14 kJ/mol和192.84 kJ/mol,对叔丁基杯[8]芳烃的反应活化能分别为291.61 kJ/mol和312.14 kJ/mol;依照Coats?Redfern方法计算的杯[8]芳烃的热解机理函数为gα)=[-ln(1-α)]1/3,反应级数n=1/3,对应非等温热解机理为随机成核和随后生长反应,对叔丁基杯[8]芳烃的热解机理函数为gα)=α1/3,反应级数n=1/3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号