首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A mineral oil of low viscosity was additivated with different concentrations of low‐density polyethylene. The wear behaviour of the additivated samples and the base oil was evaluated using a four‐ball wear tester at constant speed and variable load. Steel and ceramic (silicon nitride) were chosen for the balls. The scuffing resistance of the ceramic balls was higher than that of the steel balls. No scuffing appeared in the case of an upper steel ball in contact with lower ceramic balls. As far as the minimum wear‐scar diameter on the lower balls was concerned, an optimum concentration of polymer added to the base oil was found from the experimental data, for both types of ball. For the systems investigated, the optimum concentration was about 1.0% polyethylene.  相似文献   

2.
Base oil type, oil viscosity, and additive type and content have a strong influence on typical gear failures. As it is not possible to quantify the influence of a lubricant on load‐carrying capacity simply from a knowledge of the physical or chemical oil data, many test methods have been developed for the evaluation of mechanical—technological lubricant properties. Simple low‐cost bench test methods often show poor correlation with practice. From both experience and systematic investigation, it can be seen that testing of gear lubricants can be performed adequately only in gear test rigs using specified test gear geometry. The standard FZG back‐to‐back gear test rig has been developed over many years and improved for different types of gear failure simulation. The standard FZG oil test A/8.3/90 is widely used for the evaluation of the scuffing properties of industrial gear oils. Automotive gear oils of GL4 level can be tested in the step test A10/16.6R/90, and axle oils of GL5 level in the shock test S‐A10/16.6R/90. For slow‐speed regimes, the C/0.05/90:120/12 wear test can be used. The influence of lubricants on the micropitting performance of gears can be evaluated in the GF‐C/8.3/90 micropitting test. Different pitting tests are available, as single‐stage (PT‐C/9:10/90) or load spectrum (PT‐C/LLS:HLS/90) tests. The aim of this paper is to describe the influence of the lubricant on the different failure modes in gears, how to quantify this effect in adequate test methods, and how to introduce the results of such tests as determining values of the lubricant into load‐carrying capacity rating methods.  相似文献   

3.
MoS2/Ti low-friction coating for gears   总被引:1,自引:0,他引:1  
The applicability of a multilayer composite surface coating in gears is discussed in this work, mainly in what concerns to gear efficiency at normal operating conditions and to scuffing load capacity. The average friction coefficient between gear teeth is discussed and compared with uncoated steel gears.The disulfide molybdenum/titanium (MoS2/Ti) composite coating is studied and the deposition procedure is described.Several screening tests, like Rockwell indentations, ball cratering, pin-on-disc and reciprocating wear, were performed to evaluate the adhesion to the substrate, the tribological performance of this coating and his applicability in heavy loaded rolling-sliding contacts, such as found in gears.FZG gear efficiency tests were performed using type C gears in order to evaluate the influence of the surface coating in gear efficiency, for a wide range of operating conditions. These tests in conjunction with a numerical model for the energetic balance of the FZG gearbox allowed the determination of the average friction coefficient between gear teeth, taking into account the presence of the surface coating.FZG gear scuffing tests were also performed using type C gears in order to evaluate the coating anti-scuffing performance, which proved to be very significant.  相似文献   

4.
王芳  毕秦岭  王小波 《润滑与密封》2007,32(9):49-51,55
采用SRV型摩擦磨损试验机分别考察了Ti6Al4V/钢摩擦副在多种脂肪醇润滑下的摩擦磨损性能。结果表明,与液体石蜡相比,碳链长度小于碳8的脂肪醇作为Ti6Al4V/钢摩擦副的润滑剂表现出良好的润滑性能,其润滑机制是在Ti6Al4V磨损表面形成吸附膜。载荷和频率明显影响Ti6Al4V/钢摩擦副在脂肪醇润滑下的摩擦磨损行为和摩擦磨损机制:当载荷较小时,Ti6Al4V磨损表面主要发生轻微的擦伤;随着载荷增加,Ti6Al4V磨损表面擦伤严重并在更高载荷下发生较为严重犁沟和塑性变形。  相似文献   

5.
The development of a reliable model for predicting scuffing requires an understanding of the mechanism of scuffing initiation. This study examines the process of scuffing directly within a contact and thus tests some of the existing, proposed mechanisms.

A lubricated steel ball is loaded and rotated against a sapphire flat and the load increased in stages until scuffing occurs. Two methods of observation are employed. In one, the temperature of the steel ball across the contact is mapped continuously using an infrared microscope. A novel, nodding mirror set-up enables temperature profiles to be taken many times a second. This work shows that scuffing does not occur at either a critical maximum or at a critical inlet temperature. In the second approach, a solid-slate TV camera and video recorder are used to monitor the contact visually up to and during scuffing. This work suggests that, for a range of different lubricants, the onset of scuffing is always immediately preceded by the buildup of fine wear debris in the contact inlet. This then causes starvation followed by extremely rapid scuffing in the rear of the contact.

From these findings, an alternative method of scuffing based upon the influence of wear debris on lubricant film thickness is proposed.  相似文献   

6.
This paper describes an investigation of lubricating oils under extreme-pressure (EP) conditions in a specially modified four-ball tester. A new test method developed at the Tribology Department of ITeE described in Part I of this paper was used. In this, during a test run, the applied load is increased continuously and the friction torque is measured. A sudden increase in the friction torque indicates the collapse of the lubricating film — where scuffing is initiated. The load at this moment is called the scuffing load. If the load is increased further, it is possible to observe scuffing propagation until seizure occurs, i.e., a defined, maximum friction torque is reached. Thus, scuffing is considered as a process leading to seizure. Using the method, tribological experiments were performed employing various lubricating oils consisting of viscosity-index improvers and antiwear (AW) and extreme-pressure (EP) additives added to a base oil. Mineral and synthetic base oils of different kinematic viscosities were used. The aim was to investigate the influence of such lubricants on scuffing initiation and propagation with the present methodology. In Part I it was shown that scuffing initiation depends strongly on the kinematic viscosity of the lubricant; the higher the viscosity, the greater the scuffing load. The presence of AW and EP additives in the lubricant increases the scuffing load significantly. It was also shown that the kinematic viscosity of the lubricant oils has no effect on scuffing propagation. However, scuffing propagation is significantly mitigated by AW and, to a greater extent, by EP additives. The results of surface analyses show the decisive nature of the chemical reactions of AW and EP additives with the steel ball surface under scuffing conditions, as well as the possible diffusion of sulphur and phosphorus. Chemical reactions and diffusion lead to the creation of an inorganic surface layer (probably iron sulphide), the good anti-seizure properties of which limit scuffing propagation.  相似文献   

7.
The temperature of surface asperities affects lubricant‐surface tribochemical interactions. It is important to know the nature of this to identify ways of preventing scuffing and seizure under extreme‐pressure (EP) conditions. A new model for the determination of the temperature of contacting asperities is presented in this paper. It assumes the superposition of thermal processes occurring on the macroscale and thermal phenomena in the contact of asperity tips (microscale). Numerical results have been obtained for conditions of four‐ball testing of various lubricating oils — a mineral base oil with and without antiwear and EP additives. To calculate the scuffing and seizure temperatures, knowledge of the mechanical and physical properties of the test ball material (bearing steel) and lubricants, as well as the parameters describing the surface topography of the balls, was necessary. Friction coefficient curves were also needed; they were determined during four‐ball tests with a continuously increasing load. For the base oil with lubricating additives, the temperature of contacting surface asperities at the moment of scuffing initiation was calculated to be about 230°C and increased to over 1000°C at the highest loading of the four‐ball tribosystem. This suggests the possibility of tribochemical reactions of the lubricating additives with the steel surface, and diffusion of some elements, a modified surface layer having good antiseizure properties being produced. Such a layer prevents seizure of the tribosystem. For the base oil without lubricating additives, scuffing initiated at about 150°C and the temperature exceeded 1200°C at seizure. The temperature values obtained agree with results in the literature.  相似文献   

8.
Gear tests were performed in a FZG test rig in order to evaluate the influence of the operating conditions (torque, speed and oil bath temperature), gear geometry and base oil viscosity on gear scuffing.A mixed film lubrication model was used to evaluate the normal pressures and shear stresses in several points along the gear meshing line, for each load stage and for all the gear scuffing tests performed.The gear scuffing results were analyzed using two different approaches: one considering global gear parameters defined at the meshing line scale and another based on local parameters at the roughness asperity scale, determined using the mixed film lubrication model.The analysis at the roughness asperity level was used to complete the scuffing study performed with global gear contact parameters, explaining the occurrence of scuffing during ‘running-in’, justifying the zones in teeth flanks where the first scuffing marks appear and supplying indicators for low scuffing resistance at high oil bath temperatures.  相似文献   

9.
Methods for the evaluation of the scuffing load capacity of EP lubricants of API GL-4 and GL-5 performance levels have been developed for the standard FZG gear test rig, which has a centre distance of a = 91.5 mm. Procedure A10/16.6R/90 is capable of discriminating between industrial gear oils and automotive gear oils up to GL-4 performance level while procedure S-A10/16.6R/90 can be applied to GL-4 and GL-5 lubricants. The test methods were verified with reference oils and commercial gear lubricants. The results of the tests can be used to give a relative ranking of reference and candidate lubricants. They can also be used as limiting values in the scuffing load capacity rating method according to DIN 3990 (ISO DIS 6336).  相似文献   

10.
Tribochemistry, the chemistry of interacting surfaces under the influence of a lubricant, helps in the appropriate selection of suitable lubricant additives for specific uses. Modern lubricants are usually formulated from a range of petroleum base oils or synthetic fluids incorporating a variety of chemical additives for performance enhancement. Extreme‐pressure (EP) and anti‐wear (AW) additives are used extensively in lubricants for hypoid gears and metal cutting and forming operations to reduce wear, modify friction, and prevent scuffing of moving metallic parts. The present paper includes the synthesis and the evaluation of the tribological properties of 0.5% (w/v) solutions of some zinc bis‐(alkyl/dialkyl/alkylaryldithiocarbamates) in paraffin oil using 12.7 mm diameter steel bearing ball specimens in four‐ball tests. All the synthesised zinc dithiocarbamate additives in general, and zinc bis‐(morpholinodithio‐carbamate) (A4) in particular, exhibited good AW, EP, and friction‐reducing properties. Additive A4 especially gave low values of wear‐scar diameter and coefficient of friction at higher loads and higher values of load wear index and flash temperature parameter during EP tests (ASTM D 2783) and afforded lower values of wear‐scar diameter in a one‐hour wear test (ASTM D 2266–67). The surface topography of the wear‐scar matrix of the used ball specimens was investigated by scanning electron microscopy.  相似文献   

11.
The influence of multilayer composite surface coatings on gear scuffing load carrying capacity, gear friction coefficient and gearbox efficiency is discussed in this work.The deposition procedures of molybdenum disulphide/titanium (MoS2/Ti) and carbon/chromium (C/Cr) composite coatings are described.Tests reported in the literature, such as Rockwell indentations, ball cratering, pin-on-disc and reciprocating wear, confirm the excellent adhesion to the substrate and the tribological performance of these coatings, suggesting they can be applied with success in heavy loaded rolling–sliding contacts, such as those found in gears.FZG gear scuffing tests were performed in order to evaluate the coatings anti-scuffing performance, which both improved very significantly in comparison to uncoated gears. These results in conjunction with the friction power intensity (FPI) scuffing criterion allowed the determination of a friction coefficient factor XSC to include the coating influence on the friction coefficient expression.The composite coatings were also applied to the gears of a transfer gearbox and its efficiency was measured and compared at different input speeds and torques with the uncoated carburized steel gears. Significant efficiency improvement was found with the MoS2/Ti coating.  相似文献   

12.
车辆齿轮油承载能力的估算   总被引:1,自引:0,他引:1  
从纳米摩擦学角度考察了车辆齿轮的四球机测定结果,发现最大无卡咬负荷PB和烧结负荷PD值不能很好地代表承载能力。阐明了由这两个指标难于预测车辆齿轮油承载能力的原因是:(1)钢球材质与实际摩擦副的不同;(2)钢球的接触方式是点接触;而齿轮是线接触;首次提出一套利用四球机测试估算车辆齿轮油承载能力的方法,指出实际选择齿轮油时可根据经的啮合压力来确定油品在四球机试验中应达到的比压力。  相似文献   

13.
Polyalphaolefin (PAO) fluids have become widely accepted as high‐performance lubricants and functional fluids due to certain inherent, and highly desirable, characteristics. One of these characteristics is their low toxicity, which, combined with excellent viscometrics and lubricity, have made low‐viscosity PAO fluids an important component in lubricant formulations. Typical data found in product specifications for lubricants are the kinematic viscosity and the viscosity index. These values do not give enough information with which to choose the optimum lubricant for a lubricated contact. In mechanical systems, rolling, sliding, and rolling/sliding contacts occur, and lubricants have to work optimally under these operating conditions. In this study the rolling‐contact fatigue lives (L50 and L10) of PAOs of different viscosities were experimentally determined. The tests were carried out using a four‐ball machine. Wear tests were also carried out using another four‐ball tester in order to measure the wear‐scar diameter and the flash temperature parameter. The lubricants were characterised by infrared spectroscopy, and the pitting of the balls was observed using scanning electron microscopy.  相似文献   

14.
B.-R. Höhn  K. Michaelis  H.-P. Otto 《Wear》2009,266(3-4):461-467
The objectives of the research project were to investigate the limits concerning possible reduction of lubricant quantity in gears without detrimental influence on the load carrying capacity.The investigations covered the influence of the oil level in dip-lubricated systems as well as the oil flow rate in spray-lubricated systems namely oil/air supply systems on power loss, heat generation and load carrying capacity. The load carrying capacity in terms of characteristic gear failure modes was determined and was compared to the results using conventional and reduced lubricant volumes with dip lubrication.Therefore in back-to-back gear tests the parameters speed, load and oil quantity were varied for examination of the four main gear flank damages: scuffing, wear, pitting and micro-pitting. The investigations showed the application potential of oil/air lubrication also for heavy duty transmissions nevertheless there exists a natural limitation for lowering the oil quantity in transmissions without detrimental influence on the load carrying capacity.  相似文献   

15.
This paper describes a method for the determination of scuffing propagation using a four‐ball extreme‐pressure tester. The method has been developed at the authors' laboratory and is a completely new approach to the investigation of scuffing phenomena. A series of lubricants was prepared by blending antiwear (AW) and extreme‐pressure (EP) additives with a mineral base oil. Tribological experiments were then performed using the new method. The aim was to investigate the influence of such additives on scuffing propagation. It is shown that there is a significant influence of AW and EP additives on scuffing. Surface analyses (SEM, EDS) show the decisive role of the chemical reactions of AW and EP additives with the steel surface and their creation of a surface layer whose good antiseizure properties mitigate scuffing propagation and reduce wear intensity. It must be emphasised that the authors consider scuffing to be a process leading to the cessation of the relative movement of a tribosystem, known as seizure.  相似文献   

16.
以二丁基胺、二硫化碳、二氯甲烷为原料合成了亚甲基双丁基二硫代氨基甲酸酯,采用旋转氧弹法、高压差示扫描量热法、四球摩擦磨损试验法和成焦板等试验,考察了该添加剂在加氢润滑油基础油、合成基础油、CH-4柴油机油和工业齿轮油中的抗氧化性能和摩擦学性能.结果表明此添加剂具有良好的抗氧抗磨效果,和芳胺型抗氧剂具有良好的协同效应,能够降低高档油品中ZDDP的添加量,但铜片腐蚀性能比较差.  相似文献   

17.
摩擦系数对齿轮接触疲劳寿命的影响   总被引:3,自引:0,他引:3  
通过四球试验机测试了两种极压抗磨添加剂的摩擦系以及用该添加剂分别配制的两种工业齿轮油的摩擦系数,并用动静摩擦系精密测定仪测试了两种润滑油的动静摩擦系数。同时球柱型接触疲劳试验机的实验结果证明,低摩擦系数的摩擦副疲劳寿命长,说明摩擦系数是影响疲劳寿命的一个重要因素。  相似文献   

18.
This study compares the gear micropitting performance of high pressure nitriding (HPN) steel gears, lubricated with three different gear oils: a standard mineral lubricant, containing a special micropitting additive package, and two biodegradable esters with low toxicity additivation. The physical, chemical and wear properties of the three lubricants were determined, as well as their biodegradability and toxicity characteristics. The gear material and the corresponding heat treatment are presented.Gear simulation tests were performed in a Falex machine, using a roller-disc geometry, in order to evaluate the lubricant temperature and friction coefficient corresponding to each gear oil.Gear micropitting tests were performed on the FZG machine, using type C gears, and lubricant samples were collected during the tests for wear particle analysis. Post-test analysis included the mass loss measurement of the gear (pinion and wheel), the ferrometric analysis of the lubricant samples and the teeth flank roughness measurement below and above the pitch line. The teeth flanks were inspected using scanning electron microscopy (SEM) and surface topography measurements to assess the number and depth of micropits. Metallurgical cuts were done to observe the size and depth of micropits as well as contact fatigue crack initiation and propagation.The ester lubricants show better micropitting performance than the mineral oil, confirming the potential of environmental friendly fluids as high-performance gear oils.  相似文献   

19.
Two industrial gear oils, a reference paraffinic mineral oil with a special additive package for extra protection against micropitting and a biodegradable non-toxic ester, were characterized in terms of their physical properties, wear properties and chemical contents and compared in terms of their power dissipation in gear applications [Höhn BR, Michaelis K, Döbereiner R. Load carrying capacity properties of fast biodegradable gear lubricants. J STLE Lubr Eng 1999; Höhn BR, Michaelis K, Doleschel A. Frictional behavior of synthetic gear lubricants. Tribology research: from model experiment to industrial problem. Elsevier 2001; Martins R, Seabra J, Seyfert Ch, Luther R, Igartua A, Brito A. Power Loss in FZG gears lubricated with industrial gear oils: biodegradable ester vs. mineral oil. Proceedings of the 31th Leeds-Lyon symposium on tribology. Elsevier; to be published; Weck M, Hurasky-Schonwerth O, Bugiel Ch. Service behaviour of PVD-coated gearing lubricated with biodegradable synthetic ester oils. VDI-Berichte Nr.1665 2002.]. The viscosity–temperature behaviors are compared to describe the feasible operating temperature range.Standard tests with the Four-Ball machine and the FZG test rig [Winter H, Michaelis K. FZG gear test rig—desciption and possibilities. In: Coordinate European Council second international symposium on the performance evaluation of automotive fuels and lubricants; 1985.] characterize the wear protection properties. Biodegradability and toxicity tests are performed in order to assess the biodegradability and toxicity of the two lubricants.Power loss gear tests are performed on the FZG test rig using type C gears, for wide ranges of the applied torque and input speed, in order to compare the energetic performance of the two industrial gear oils. Lubricant samples are collected during and at the end of the gear tests [Hunt TM. Handbook of wear debris analysis and particle detection in liquids. UK: Elsevier Science; 1993.] and are analyzed by Direct Reading Ferrography (DR3) in order to evaluate and compare the wear particles concentration indexes of both lubricants.An energetic model of the FZG test gearbox is developed, integrating the mechanisms of power dissipation and heat evacuation, in order to determine its operating equilibrium temperature. An optimization routine allows the evaluation of the friction coefficient between the gear teeth for each lubricant tested, correlating experimental and model results.For each lubricant and for the operating conditions considered, a correction expression is presented in order to adjust the friction coefficient proposed by Höhn et al. [Höhn BR, Michaelis K, Vollmer T. Thermal rating of gear drives: balance between power loss and heat dissipation. AGMA Technical Paper; October 1996. pp 12. ISBN: 1-55589-675-8.] to the friction coefficient exhibited by these lubricants. The influence of each lubricant on the friction coefficient between the gear teeth is discussed taking into consideration the operating torque and speed and the stabilized operating temperature.  相似文献   

20.
W.J. Bartz  V. Krüger 《Wear》1975,35(2):315-329
Using the FZG gear tester with heat-treated and case-hardened gears the effect of lubricants and additives on the incidence of pitting fatigue was investigated. The influence of base oil type and additives requires further investigation before general conclusions can be derived. From the results now available extreme pressure additives which increase the scuffing load carrying capacity of case-hardened gears allow increased load testing without surface pitting failure. Additives have a direct beneficial influence on retarding the pitting of heat-treated gears. Of the additives tested, the most effective in reducing pitting fatigue failure was MoS2, but with a high concentration of about 1.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号