首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 906 毫秒
1.
固体氧化物燃料电池(SOFC)趋向于直接使用甲烷天然气为燃料,确定甲烷在固体氧化物燃料电池阳极发生的化学与电化学反应非常重要.以Ni/YSZ为阳极、YSZ板做电解质、LSM为阴极,用涂浆法制作电解质支撑的电池,研究低浓度干甲烷在固体氧化物燃料电池中的反应.改变甲烷浓度、电池工作温度、电解质厚度,用在线色谱测量不同电流密度下,阳极出口气体产生速率.根据阳极出口气体产生速率变化,分析干甲烷在阳极的反应变化.通过氧消耗计算和转移电子数的分析,说明甲烷在电池阳极发生不同类型的反应.电流密度小时,甲烷发生部分氧化反应.电流密度大时,发生氢氧化和CO氧化,部分甲烷发生总反应为完全氧化的反应.部分甲烷发生完全氧化反应的同时,部分甲烷仍发生部分氧化反应,但其反应速率随电流密度增加逐渐降低.甲烷浓度和试验温度增加,甲烷开始发生完全氧化的电流密度增加.  相似文献   

2.
以氧化钇稳定的氧化锆(YSZ)做电解质,氧化钪稳定的氧化锆(Ni-ScSZ)为阳极,研究了不同浓度干甲烷在固体氧化物燃料电池阳极上的氧化行为.改变甲烷浓度,利用色谱在线测量不同电流密度下阳极出口气体产生的种类与速率.通过氧的分析与反应发生时的电子数分析,研究了干甲烷在Ni-ScSZ阳极的氧化行为,并对比研究了相同浓度的干甲烷在Ni-YSZ阳极上的氧化行为.结果表明,在Ni-ScSZ阳极上,高浓度干甲烷与在Ni-YSZ阳极上类似,由甲烷裂解反应生成的碳发生氧化反应生成CO;低浓度干甲烷在电流密度较低的情况下,在1 000 ℃可发生CO氧化反应,生成CO2.在Ni-YSZ阳极上,低浓度干甲烷在较高电流密度下,在生成CO2的同时甲烷发生完全氧化反应.  相似文献   

3.
以氧化钇稳定的氧化锆(YSZ)作电解质、Ni-YSZ为阳极,研究中/低浓度干甲烷在固体氧化物燃料电池(SOFC)中阳极的反应。改变甲烷浓度,测量不同电流密度下,阳极出口气体产生速率,得到不同电流密度下的CH_4转化率(X_(CH_4))与CO选择性(S_(CO))。根据质量平衡以及产物生成速率与不同反应速率之间的关系,分析干甲烷在阳极平行发生的化学和电化学反应,得到X_(CH_4)和S_(CO)与阳极反应的关系。结果表明,低浓度千甲烷,在电流密度小时,发生部分氧化(POM)反应;电流密度大时,在发生POM反应的同时,发生全氧化(DOM)反应。中浓度干甲烷,发生POM反应。当发生DOM反应时,随电流密度的增加,CO选择性降低,甲烷转化率增加的幅度降低。发生POM反应时,两种浓度甲烷的电化学转化速率基本相同。  相似文献   

4.
为为探讨SOFC中干甲烷流量对反应的影响,采用色谱在线检测阳极尾气,总结阳极尾气的变化规律,在此基础上,分析干甲烷在固体氧化物燃料电池Ni-YSZ阳极上的反应,寻找干甲烷流量与电流对电池阳极反应影响的数学关系。依据甲烷基元反应的活化能分析反应的途径,结果表明,随电流密度以及氧离子流量的增加,干甲烷与不同电流密度下的氧离子依次发生电化学反应。这些电化学反应分别是甲烷部分氧化反应生成CO、H2并产生电子,或生成CO、H2O、H2和产生电子的反应,或产生CO、H2O和产生电子的反应,或甲烷完全氧化的电化学反应。高流量甲烷只发生消耗氧离子最少的部分氧化反应,中流量甲烷发生前两个或前三个反应。依据法拉第第一定律及反应物之间的关系,确定甲烷的低、中、高流量的判定依据分别为:v(CH4)小于等于I/(4F),v(CH4)大于等于I/(4F)以及小于等于I/(2F),v(CH4)大于等于I/(2F)。  相似文献   

5.
V2O5催化甲烷液相部分氧化工艺过程研究   总被引:9,自引:1,他引:9  
以V2O5为催化剂,在发烟硫酸中进行了甲烷液相选择性氧化的研究工作,考察了V2O5催化剂用量、反应温度、反应时间、发烟硫酸浓度等工艺条件对反应收率的影响,进行了甲烷液相选择性氧化的催化机理探讨和宏观动力学推导.甲烷在部分氧化反应中首先转化为硫酸甲酯,后者进一步水解得到甲醇.甲烷转化率可达54.5%,选择性45.5%,相应的工艺条件为催化剂用量0.0175 mol、反应温度180C、发烟硫酸中SO3含量50%(wt)、反应时间2 h.V2O5催化甲烷液相部分氧化反应遵循亲代取代机理,甲烷液相部分氧化反应为一级反应.  相似文献   

6.
采用Ir-Ta氧化物涂层阳极(DSA)和直流电解法研究了酸性蚀刻液的阳极氧化再生回用过程.酸性蚀刻液在Ir-Ta氧化物涂层阳极的氧化再生过程中发生浓差极化,电极反应速率为Cu+离子扩散传质所控制,极限电流密度与Cu+离子浓度和温度成正比,采用小于或等于极限电流密度的电流密度进行阳极氧化时不析出氯气.酸性蚀刻液阳极氧化再生的电流密度小,槽电压低,电解能耗少,电流效率可达到100%.阳极氧化再生后酸性蚀刻液的蚀刻能力与双氧水再生的相近,完全可以替代双氧水再生.  相似文献   

7.
肖勇山  陆润侠  唐呈前  晁伟辉  陈立宇 《化工进展》2014,33(10):2598-2607,2618
甲烷液相转化具有反应条件温和、能耗低、投资少等优点,研究甲烷液相部分氧化制甲醇对实现天然气的直接转化和利用具有极为重要的战略意义。本文介绍了甲烷液相部分氧化制甲醇反应中有关反应溶剂介质的研究进展,详细叙述了各种酸性介质、水以及乙腈溶剂在甲烷部分氧化制甲醇中的应用,总结了不同溶剂介质下的反应机理、催化剂、溶剂浓度等对甲烷转化的影响,探讨了溶剂在甲烷液相部分氧化中的作用,指出依据溶剂介质的性质和作用,开发环境友好、反应条件温和、转化效率高的优良新型溶剂是甲烷液相部分氧化制甲醇的重要研究方向。  相似文献   

8.
温度和氧浓度对PX氧化的影响   总被引:1,自引:0,他引:1  
谢刚  代伟  司马坚  李希 《聚酯工业》2003,16(3):17-21
根据不同温度、氧浓度下实测的PX液相催化氧化各中间组分浓度 时间关系,采用双曲型的动力学模型拟合实验数据,得到了各步反应活化能数据和速率常数与氧浓度的关系式。结果说明,PT酸氧化为4 CBA这一步的活化能最大,是整个连串反应过程的速率控制步骤;反应有一个氧浓度门槛值,在此值以上,反应速率不再明显增大,在此值以下,反应速率随氧浓度增大而增大。工业尾氧体积分数一般在4%~5%,相应的反应速率在最大速率的90%左右。  相似文献   

9.
醋酸混合溶剂中碘催化甲烷部分氧化过程研究   总被引:6,自引:0,他引:6  
在醋酸和杂多酸混和溶剂中进行了甲烷液相部分氧化过程研究.进行了碘系列催化剂以及溶剂体系中杂多酸筛选,考察了催化剂用量、磷钨酸浓度、氧化剂类型、反应温度、压力等条件对甲烷转化的影响.结果表明,在磷钨酸浓度0.072 mol/L,碘含量0.04 mol/L,KMnO4为0.158 mol/L,温度210℃,压力4.0 Mpa条件下,甲烷转化率可达12.98%,目的产物醋酸甲酯选择性84.39%.初步探讨了醋酸和磷钨酸混合溶剂中碘催化甲烷液相选择性氧化的亲电反应机理.  相似文献   

10.
甲烷液相部分氧化合成甲醇过程研究   总被引:15,自引:3,他引:12  
以碘系列化合物为催化剂,在发烟硫酸溶剂中进行了甲烷液相选择性氧化制取甲醇。考察了催化剂种类、用量、反应温度、发烟硫酸浓度等工艺条件对反应收率的影响,探讨了甲烷液相选择性氧化的催化机理以及发烟硫酸中 SO3 含量的作用。实验结果表明,甲烷液相部分氧化的最佳催化剂为 I2,最佳的工艺条件为催化剂浓度为0.099 mol?L?1、反应温度 473K、发烟硫酸(SO350%(wt))、反应时间 3h。 在此条件下,甲烷转化的转化率可达 82.65%,选择性可达 70.43%。机理研究表明,甲烷在部分氧化反应中首先转化为硫酸单甲酯,然后进一步水解得到甲醇, 反应遵循亲电取代机理。发烟硫酸中的游离 SO3的作用就在于提供较好的亲电环境、反应的氧源以及亲核试剂。  相似文献   

11.
SOFC中不同浓度干甲烷在Ni-YSZ阳极上的反应   总被引:4,自引:1,他引:3       下载免费PDF全文
引言 天然气是适于固体氧化物燃料电池(SOFC)应用的燃料之一,天然气中主要成分是甲烷.甲烷通过全氧化或部分氧化[1-4]反应,在发电的同时,生成适于发电或其他用途的富含H2、CO的气体.  相似文献   

12.
Redox tolerance of 50 and 500 μm thick Ni/YSZ (yttria‐stabilized zirconia) anodes supported on YSZ electrolytes were studied under single‐chamber solid oxide fuel cell conditions. Open circuit voltage, electrochemical impedance spectra, and discharge curves of the cells were measured under different methane/oxygen ratios at 700 °C. For the cell with the thin anode, a significant degradation accompanying oscillatory behaviors was observed, whereas the cell based on the thick anode was much more stable under the same conditions. In situ local anode resistance (Rs) results indicated that the Ni/NiO redox cycling was responsible for the oscillatory behaviors, and the cell degradation was primarily caused by the Ni reoxidation. Reoxidation of the thick anode took place at a low methane/oxygen ratio, but the anode can be recovered to its original state by switching to a methane‐rich environment. On the contrary, the thin anode was unable to be regenerated after the oxidation. Microstructure damage of the anode was attributed to its irreversible degradation.  相似文献   

13.
The electrochemical membrane reactor of YSZ (yttria-stabilized zirconia) solid electrolyte coated with Pd and Ag as anode and cathode, respectively, has been applied to the partial oxidation of methane to synthesis gas (CO + H2). The Pd|YSZ|Ag catalytic system has shown a remarkable activity for CO production at 773 K, and the selectivity to CO was quite high (96.3%) under oxygen pumping condition at 5 mA. The H2 production strongly depended on the oxidation state of the Pd anode surface. Namely, the H2 treatment of the Pd anode at 773 K for 1 h drastically reduced the rate of H2 production, while air treatment enhanced the H2 production rate. From the results of the partial oxidation of CH4 with molecular oxygen, it is considered that the reaction site of the electrochemical oxidation of CH4 to synthesis gas was the Pd–YSZ–gas-phase boundary (triple-phase boundary). In addition, it is found that the oxygen species pumped electrochemically over the Pd surface demonstrated similar activity to adsorbed oxygen over Pd, PdOad, for the selective oxidation of CH4 to CO, when the Pd supported on YSZ was used as a fixed-bed catalyst for CH4 oxidation with the adsorbed oxygen. The difference with respect to the H2 formation between the electrochemical membrane system and the fixed-bed catalyst reactor results from differences in the average particle size of Pd and the way of the oxygen supply to the Pd surface. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
A solid state electrochemical reactor is described in which reactants can be oxidised at high temperatures over an anode/catalyst using co-fed oxygen gas as well as electrochemically supplied oxygen. The setup permits injection of isotopic pulses in the reactant streams. The composition and isotopic distribution in the products are recorded with a quadrupole mass spectrometer. The use of the system is exemplified by oxidation of methane over a Au + SrFeO3?δ//YSZ anode at 800–850°C. Pulses of 18O2 in the stream of co-fed O2 were used to study the reactivity and products of gaseous oxygen as distinguished from the electrochemically supplied oxygen. The results indicate that the anode used supports oxygen pumping, but is only moderately active for methane oxidation. The products are mainly CO and CO2. The content of 18O in the products is low, indicating that methane oxidation takes place by 16O-rich lattice oxygen. In comparison, a reference Au//YSZ electrode was found to be a slower anode for oxygen pumping, but a better catalyst for the reaction between CH4 and gaseous O2, seemingly involving adsorbed oxygen.  相似文献   

15.
A model predicting the temperature field in the porous reforming anode of a solid oxide fuel cell is presented herein. The model is based on mass, momentum, and heat balances of a chemically reacting mixture of gases within the porous matrix of the anode. The important novel characteristic of the model is the consideration of the both internal reforming and electrochemical reactions in the bulk of the porous anode. The electronic and ionic currents in the anodes are calculated utilizing the solution of the Poisson equations for the electric potentials in the porous medium. The transfer current density is described by the Butler–Volmer equation.The model is applied to investigate the temperature field and the reactive flow in button-shaped fuel cells with uniform and graded (multi-layer) anodes composed of Ni and YSZ particles with methane/water vapor mixture used as the fuel. The maximum temperature difference between the hot and cold spots of the anodes is found to reach up to 200 K. The results indicate that the generation of Joule heating caused by the current passing through the anode and the activation losses are the dominating heat sources compared to the gas-water shift and electrochemical reactions.  相似文献   

16.
A nickel and yttrium‐stabilized zirconia (Ni‐YSZ) composite is one of the most commonly used anode materials in solid oxide fuel cells (SOFCs). One of the drawbacks of the Ni‐YSZ anode is its susceptibility to deactivation due to the formation of carbonaceous species when hydrocarbons are used as fuel supplies. We therefore initiated an electrochemical study of the influence of methane (CH4) on the performance of Ni‐YSZ anodes by examining the kinetics of the oxidation of CH4 and H2 over operating temperatures of 600–800°C. Anode performance deterioration was then correlated with the degree of carbonization observed on the anode using ex‐situ X‐ray powder diffraction and scanning electron microscopy techniques. Results showed that carbonaceous species led to a significant deactivation of Ni‐YSZ anode toward methane oxidation. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

17.
Samarium-doped ceria (SDC) is coated onto a Ni/yttria-stabilized zirconia (Ni/YSZ) anode for the direct use of methane in solid-oxide fuel cells. Porous SDC thin layer is applied to the anode using the sol–gel coating method. The experiment was performed in H2 and CH4 conditions at 800 °C. The cell performance was improved by approximately 20 % in H2 conditions by the SDC coating, due to the high ionic conductivity, the mixed ionic and electronic conductive property of the SDC, and the increased triple phase boundary area by the SDC coating in the anode. Carbon was hardly deposited in the SDC-coated Ni/YSZ anode. The cell performance of the SDC-coated Ni/YSZ anode did not show any significant degradation for up to 90 h under 0.1 A cm?2 at 800 °C. The porous thin SDC coating on the Ni/YSZ anode provided the electrochemical oxidation of CH4 over the whole anode, and minimized the carbon deposition by electrochemical carbon oxidation.  相似文献   

18.
The anodes for direct utilisation of hydrocarbon fuels have been developed by using Cu/Ceria‐based nano‐composite powders. The CuO/GDC/YSZ–YSZ or CuO/GDC‐GDC nano‐composite powders were synthesised by coating nano‐sized CuO and CeO2 particles on the YSZ or GDC core particles selectively by the Pechini process. Their microstructures and electrical properties have been investigated with long‐term stability in reactive gases of dry methane and air. The anodes fabricated using Cu‐based nano‐composite anodes showed almost no carbon deposition until 500 h in dry CH4 atmosphere. The type of an electrolyte‐supported single cell in conjunction with the Cu/Ceria‐based anode must be selected together for the low melting temperature of Cu/CuO. The GDC electrolyte supported unit cell with the Cu/GDC–GDC anode showed the maximum power density of 0.1 Wcm–2 and long‐term stability for more than 500 h under electronic load of 0.05 Acm–2 at 650 °C in dry methane atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号