首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 457 毫秒
1.
Nishimura K  Yamakawa T 《Lipids》1968,3(3):262-266
A small amount of cerebroside containing glucose (glucosyl ceramide) was isolated from bovine brain by Florisil column chromatography and thin-layer chromatography. The fatty acids of the glucosyl ceramide were palmitic and stearic acids; small amounts of oleic and linoleic acids were present. Rat brain tissue slices, incubated with U-14C-glucose, incorporated more radioacivity into glucosyl ceramide than into galactosyl ceramide. From these results the possible metabolic significance of the brain glucosyl ceramide in ganglioside metabolism is discussed.  相似文献   

2.
Glioblastoma (GBM), the most commonly occurring primary tumor arising within the central nervous system, is characterized by high invasiveness and poor prognosis. In spite of the improvement in surgical techniques, along with the administration of chemo- and radiation therapy and the incessant investigation in search of prospective therapeutic targets, the local recurrence that frequently occurs within the peritumoral brain tissue makes GBM the most malignant and terminal type of astrocytoma. In the current study, we investigated both GBM and peritumoral tissues obtained from 55 hospitalized patients and the expression of three molecules involved in the onset of resistance/unresponsiveness to chemotherapy: O6-methylguanine methyltransferase (MGMT), breast cancer resistance protein (BCRP1), and A2B5. We propose that the expression of these molecules in the peritumoral tissue might be crucial to promoting the development of early tumorigenic events in the tissue surrounding GBM as well as responsible for the recurrence originating in this apparently normal area and, accordingly, for the resistance to treatment with the standard chemotherapeutic regimen. Notably, the inverse correlation found between MGMT expression in peritumoral tissue and patients’ survival suggests a prognostic role for this protein.  相似文献   

3.
The gut microbiome has attracted increasing attention from researchers in recent years. The microbiota can have a specific and complex cross-talk with the host, particularly with the central nervous system (CNS), creating the so-called “gut–brain axis”. Communication between the gut, intestinal microbiota, and the brain involves the secretion of various metabolites such as short-chain fatty acids (SCFAs), structural components of bacteria, and signaling molecules. Moreover, an imbalance in the gut microbiota composition modulates the immune system and function of tissue barriers such as the blood–brain barrier (BBB). Therefore, the aim of this literature review is to describe how the gut–brain interplay may contribute to the development of various neurological disorders, combining the fields of gastroenterology and neuroscience. We present recent findings concerning the effect of the altered microbiota on neurodegeneration and neuroinflammation, including Alzheimer’s and Parkinson’s diseases, as well as multiple sclerosis. Moreover, the impact of the pathological shift in the microbiome on selected neuropsychological disorders, i.e., major depressive disorders (MDD) and autism spectrum disorder (ASD), is also discussed. Future research on the effect of balanced gut microbiota composition on the gut–brain axis would help to identify new potential opportunities for therapeutic interventions in the presented diseases.  相似文献   

4.
The electric organ membrane has been the subject of many studies, due principally to its rich content of nicotinic acetylcholine receptor (AChR). Knowing its lipid composition is clearly important. Although its major membrane lipids have been characterized, its ganglioside composition has not been as well-described. In this study, gangliosides were characterized in membranes prepared from two species of electric organ,Torpedo californica andT. nobiliana. The ganglioside content of total electric organ membranes and AChR-enriched membranes was similar in both species, accounting for from 0.9 to 1.5% of membrane lipid by weight. However, the AChR-enriched membranes contained significantly less ganglioside relative to AChR than did the total membrane preparations. Five major gangliosides were purified fromT. californica and identified as II3NeuNAc-GgOse3 (GM2); II3(NeuNAc)2-GgOse3 (GD2), IV3NeuNAc, II3NeuNAc-GgOse4 (GD1a), IV3NeuNAc, II3(NeuNAc)2−GgOse5 (GT1b), and IV3(NeuNAc)2, II3(NeuNAc)2−GgOse4 (GQ1b). Together these five gangliosides accounted for over 90% of the total ganglioside present in the two membrane preparations from both species. The most abundant ganglioside by far was GM2, which accounted for about one-half of the ganglioside content, followed by GD2. Determination of the N-fatty acid composition was performed on gangliosides purified fromT. nobiliana. The lower-order gangliosides, GM2, GD2, and GD1a, contained substantial amounts of very long chain fatty acids (>20 carbons), including α-hydroxynervonic acid (15–21% of total). In contrast, unsubstituted, 14–18 carbon chains accounted for about 90% of the fatty acids on the two higher-order gangliosides, GT1b and GQ1b.  相似文献   

5.
DNA-double strand break (DSB), detected by immunostaining of key proteins orchestrating repair, like γH2AX and 53BP1, is well established as a surrogate for tissue radiosensitivity. We hypothesized that the generation of normal brain 3D organoids (“mini-brains”) from human induced pluripotent stem cells (hiPSC) combined with detection of DNA damage repair (DDR) may hold the promise towards developing personalized models for the determination of normal tissue radiosensitivity. In this study, cerebral organoids, an in vitro model that stands in its complexity between 2D cellular system and an organ, have been used. To quantify radiation-induced response, immunofluorescent staining with γH2AX and 53BP1 were applied at early (30 min, initial damage), and late time points (18 and 72 h, residual damage), following clinical standard 2 Gy irradiation. Based on our findings, assessment of DDR kinetics as a surrogate for radiosensitivity in hiPSC derived cerebral organoids is feasible. Further development of mini-brains recapitulating mature adult neuronal tissue and implementation of additional signaling and toxicity surrogates may pave the way towards development of next-generation personalized assessment of radiosensitivity in healthy neuronal tissue.  相似文献   

6.
Xenobiotic exposure during pregnancy and lactation has been linked to perinatal changes in male reproductive outcomes and other endocrine parameters. This pilot study wished to assess whether brief maternal exposure of rats to xenobiotics dibutyl phthalate (DBP) or diethylstilbestrol (DES) might also cause long-term changes in hypothalamic gene expression or in reproductive behavior of the resulting offspring. Time-mated female Sprague Dawley rats were given either DBP (500 mg/kg body weight, every second day from GD14.5 to PND6), DES (125 µg/kg body weight at GD14.5 and GD16.5 only), or vehicle (n = 8–12 per group) and mild endocrine disruption was confirmed by monitoring postnatal anogenital distance. Hypothalamic RNA from male and female offspring at PND10, PND24 and PND90 was analyzed by qRT-PCR for expression of aromatase, oxytocin, vasopressin, ER-alpha, ER-beta, kisspeptin, and GnRH genes. Reproductive behavior was monitored in male and female offspring from PND60 to PND90. Particularly, DES treatment led to significant changes in hypothalamic gene expression, which for the oxytocin gene was still evident at PND90, as well as in sexual behavior. In conclusion, maternal xenobiotic exposure may not only alter endocrine systems in offspring but, by impacting on brain development at a critical time, can have long-term effects on male or female sexual behavior.  相似文献   

7.
The botulinum neurotoxins are potent molecules that are not only responsible for the lethal paralytic disease botulism, but have also been harnessed for therapeutic uses in the treatment of an increasing number of chronic neurological and neuromuscular disorders, in addition to cosmetic applications. The toxins act at the cholinergic nerve terminals thanks to an efficient and specific mechanism of cell recognition which is based on a dual receptor system that involves gangliosides and protein receptors. Binding to surface-anchored gangliosides is the first essential step in this process. Here, we determined the X-ray crystal structure of the binding domain of BoNT/E, a toxin of clinical interest, in complex with its GD1a oligosaccharide receptor. Beyond confirmation of the conserved ganglioside binding site, we identified key interacting residues that are unique to BoNT/E and a significant rearrangement of loop 1228–1237 upon carbohydrate binding. These observations were also supported by thermodynamic measurements of the binding reaction and assessment of ganglioside selectivity by immobilised-receptor binding assays. These results provide a structural basis to understand the specificity of BoNT/E for complex gangliosides.  相似文献   

8.
Gangliosides are effective biochemical markers of brain pathologies, being also in the focus of research as potential therapeutic targets. Accurate brain ganglioside mapping is an essential requirement for correlating the specificity of their composition with a certain pathological state and establishing a well-defined set of biomarkers. Among all bioanalytical methods conceived for this purpose, mass spectrometry (MS) has developed into one of the most valuable, due to the wealth and consistency of structural information provided. In this context, the present article reviews the achievements of MS in discovery and structural analysis of gangliosides associated with severe brain pathologies. The first part is dedicated to the contributions of MS in the assessment of ganglioside composition and role in the specific neurodegenerative disorders: Alzheimer’s and Parkinson’s diseases. A large subsequent section is devoted to cephalic disorders (CD), with an emphasis on the MS of gangliosides in anencephaly, the most common and severe disease in the CD spectrum. The last part is focused on the major accomplishments of MS-based methods in the discovery of ganglioside species, which are associated with primary and secondary brain tumors and may either facilitate an early diagnosis or represent target molecules for immunotherapy oriented against brain cancers.  相似文献   

9.
Primary high-grade gliomas possess invasive growth and lead to unfavorable survival outcome. The investigation of biomarkers for prediction of survival outcome in patients with gliomas is important for clinical assessment. The DEAD (Asp-Glu-Ala-Asp) box helicase 3, X-linked (DDX3X) controls tumor migration, proliferation, and progression. However, the role of DDX3X in defining the pathological grading and survival outcome in patients with human gliomas is not yet clarified. We analyzed the DDX3X gene expression, WHO pathological grading, and overall survival from de-linked data. Further validation was done using quantitative RT-PCR of cDNA from normal brain and glioma, and immunohistochemical (IHC) staining of tissue microarray. Statistical analysis of GEO datasets showed that DDX3X mRNA expression demonstrated statistically higher in WHO grade IV (n = 81) than in non-tumor controls (n = 23, p = 1.13 × 10−10). Moreover, DDX3X level was also higher in WHO grade III (n = 19) than in non-tumor controls (p = 2.43 × 10−5). Kaplan–Meier survival analysis showed poor survival in patients with high DDX3X mRNA levels (n = 24) than in those with low DDX3X expression (n = 53) (median survival, 115 vs. 58 weeks, p = 0.0009, by log-rank test, hazard ratio: 0.3507, 95% CI: 0.1893–0.6496). Furthermore, DDX3X mRNA expression and protein production significantly increased in glioma cells compared with normal brain tissue examined by quantitative RT-PCR, and Western blot. IHC staining showed highly staining of high-grade glioma in comparison with normal brain tissue. Taken together, DDX3X expression level positively correlates with WHO pathologic grading and poor survival outcome, indicating that DDX3X is a valuable biomarker in human gliomas.  相似文献   

10.
Ischemic stroke is a major cause of death and disability, intensely demanding innovative and accessible therapeutic strategies. Approaches presenting a prolonged period for therapeutic intervention and new treatment administration routes are promising tools for stroke treatment. Here, we evaluated the potential neuroprotective properties of nasally administered human adipose tissue mesenchymal stem cell (hAT-MSC)-derived extracellular vesicles (EVs) obtained from healthy individuals who underwent liposuction. After a single intranasal EV (200 µg/kg) administered 24 h after a focal permanent ischemic stroke in rats, a higher number of EVs, improvement of the blood–brain barrier, and re-stabilization of vascularization were observed in the recoverable peri-infarct zone, as well as a significant decrease in infarct volume. In addition, EV treatment recovered long-term motor (front paws symmetry) and behavioral impairment (short- and long-term memory and anxiety-like behavior) induced by ischemic stroke. In line with these findings, our work highlights hAT-MSC-derived EVs as a promising therapeutic strategy for stroke.  相似文献   

11.
Five ganglioside fractions from bovine adrenal medulla were analyzed with respect to their fatty acid and long chain base compositions. The five fractions included two hematosides and three hexasamine-containing species, the latter having chromatographic properties comparable to the major gangliosides of brain. The fatty acid compositions of all five were similar: 22∶0 was the most abundant, but significant amounts of 16∶0, 18∶0, 24∶0 and 24∶1 were also present. No hydroxy fatty acids were detected. The principal long chain base in each fraction was 4-sphingenine (sphingosine), with lesser amounts of the C16 and C17 homologues. Minor quantities of the corresponding saturated bases were also detected. These were identified by two gas liquid chromatography methods: (a) trimethylsilyl ether derivatives, (b) aldehydes formed by periodate oxidation of the long chain bases. No 4-eicosasphingenine (C20-sphingosine), characteristic of brain gangliosides, was found in any of the fractions. The results demonstrate that gangliosides of the adrenal medulla show tissue specificity in fatty acid and long chain base composition which is independent of carbohydrate structure.  相似文献   

12.
Preparations of human thoracic aortas containing intima and media were obtained post-mortem, and gangliosides were isolated by standard techniques. The quantity of ganglioside sialic acid, as assayed by gas liquid chromatography, was lowest in normal aortas (33±9 nmoles N-acetyl neuraminic acid/g wet tissue) and progressively increased in aortas containing predominantly fatty streaks (54±1 nmoles N-acetyl neuraminic acid/g wet tissue), raised yellow plaques (88±23 nmoles N-acetyl neuraminic acid/g wet tissue), and ulcerated lesions (270±44 nmoles N-acetyl neuraminic acid/h wet tissues). Both thin layer chromatography of the gangliosides and gas liquid chromatography of the constituent sugars demonstrated the presence of a ganglioside with properties similar to a monosialyl lactosyl ceramide (GM3) as the major ganglioside. A ganglioside with similar chemical characteristics was isolated from plasma and low density lipoproteins.  相似文献   

13.
Sphingolipids (SLs), glycosphingolipids (GSLs), and eicosanoids are bioactive lipids, which play important roles in the etiology of various diseases, including cancer. However, their content and roles in cancer cells, and in particular in the exosomes derived from tumor cells, remain insufficiently characterized. In this study, we evaluated alterations of SL and GSL levels in transformed cells and their exosomes, using comparative HPLC-MS/MS analysis of parental human bronchial epithelial cells HBEC-12KT and their derivative, benzo[a]pyrene-transformed HBEC-12KT-B1 cells with the acquired mesenchymal phenotype. We examined in parallel SL/GSL contents in the exosomes released from both cell lines. We found significant alterations of the SL/GSL profile in the transformed cell line, which corresponded well with alterations of the SL/GSL profile in exosomes derived from these cells. This suggested that a majority of SLs and GSLs were transported by exosomes in the same relative pattern as in the cells of origin. The only exceptions included decreased contents of sphingosin, sphingosin-1-phosphate, and lactosylceramide in exosomes derived from the transformed cells, as compared with the exosomes derived from the parental cell line. Importantly, we found increased levels of ceramide phosphate, globoside Gb3, and ganglioside GD3 in the exosomes derived from the transformed cells. These positive modulators of epithelial–mesenchymal transition and other pro-carcinogenic processes might thus also contribute to cancer progression in recipient cells. In addition, the transformed HBEC-12KT-B1 cells also produced increased amounts of eicosanoids, in particular prostaglandin E2. Taken together, the exosomes derived from the transformed cells with specifically upregulated SL and GSL species, and increased levels of eicosanoids, might contribute to changes within the cancer microenvironment and in recipient cells, which could in turn participate in cancer development. Future studies should address specific roles of individual SL and GSL species identified in the present study.  相似文献   

14.
15.
16.
Martín MJ  Martín-Sosa S  Hueso P 《Lipids》2001,36(3):291-298
The stage of lactation is one of the most important factors that influence milk composition. Changes in fatty acids from triacylglycerols and phospholipids have already been reported. In this study, we looked for a lactational change in the ganglioside lipid moeity since ganglioside contents and patterns vary strongly with stage of lactation. Individual gangliosides from four stages were isolated, methanolyzed to cleave the bonds between individual constituents, and derivatized for gas-liquid chromatography and gas chromatography/mass spectrometry analyses. Ceramide components, both fatty acids (as methyl esters derivatives) and long-chain bases, were identified and quantified. The results pointed to a marked change in ceramide from colostrum to milk that was characterized by a dramatic decrease in saturated and the longest-chain fatty acids as well as an increase in 18∶1 and 18∶2. The major long-chain base along lactation was a recently described structure, 3-ethoxy-15∶0 sphinganine. Other new long-chain base structures appeared in these gangliosides. All these changes suggest differences in the fluidity of the fat globule membrane, reflecting physiological variations in cows with respect to milk production.  相似文献   

17.
Dahiya  Rajvir  Brasitus  Thomas A. 《Lipids》1986,21(2):112-116
Previous studies have suggested that glycosphingolipids may be involved in a number of physiological functions of the small intestinal mucosa. Regional variations in many of these processes exist along the length of this organ. In the present studies, the glycosphingolipid and ceramide composition of the proximal, middle and distal thirds of the rat small intestine were characterized and compared. Mono- and trihexosylceramide were the major neutral glycolipids and hematoside (GM3), the principal ganglioside of this organ. Monohexosylceramide was the major glycolipid of the proximal segment, whereas trihexosylceramide predominated in the distal segments. The total content of neutral glycolipids, ceramide and gangliosides as well as the content of the individual glycosphingolipids and ceramide were highest in the distal segment, intermediate in the middle and lowest in the proximal segment. Additionally, regional variations were noted in the fatty acid composition of the major glycosphingolipids. These differences in the composition of glycolipids and ceramide along the length of the intestine may be responsible, at least partially, for the regional functional specialization seen in this organ.  相似文献   

18.
Gangliosides have been considered to modulate cell signals in the microdomain of the cell membrane, lipid/rafts, or glycolipid-enriched microdomain/rafts (GEM/rafts). In particular, cancer-associated gangliosides were reported to enhance the malignant properties of cancer cells. In fact, GD2-positive (GD2+) cells showed increased proliferation, invasion, and adhesion, compared with GD2-negative (GD2−) cells. However, the precise mechanisms by which gangliosides regulate cell signaling in GEM/rafts are not well understood. In order to analyze the roles of ganglioside GD2 in the malignant properties of melanoma cells, we searched for GD2-associating molecules on the cell membrane using the enzyme-mediated activation of radical sources combined with mass spectrometry, and integrin β1 was identified as a representative GD2-associating molecule. Then, we showed the physical association of GD2 and integrin β1 by immunoprecipitation/immunoblotting. Close localization was also shown by immuno-cytostaining and the proximity ligation assay. During cell adhesion, GD2+ cells showed multiple phospho-tyrosine bands, i.e., the epithelial growth factor receptor and focal adhesion kinase. The knockdown of integrin β1 revealed that the increased malignant phenotypes in GD2+ cells were clearly cancelled. Furthermore, the phosphor-tyrosine bands detected during the adhesion of GD2+ cells almost completely disappeared after the knockdown of integrin β1. Finally, immunoblotting to examine the intracellular distribution of integrins during cell adhesion revealed that large amounts of integrin β1 were localized in GEM/raft fractions in GD2+ cells before and just after cell adhesion, with the majority being localized in the non-raft fractions in GD2− cells. All these results suggest that GD2 and integrin β1 cooperate in GEM/rafts, leading to enhanced malignant phenotypes of melanomas.  相似文献   

19.
Hypoxic-Ischemic Encephalopathy (HIE) in the brain is the leading cause of morbidity and mortality in neonates and can lead to irreparable tissue damage and cognition. Thus, investigating key mediators of the HI response to identify points of therapeutic intervention has significant clinical potential. Brain repair after HI requires highly coordinated injury responses mediated by cell-derived extracellular vesicles (EVs). Studies show that stem cell-derived EVs attenuate the injury response in ischemic models by releasing neuroprotective, neurogenic, and anti-inflammatory factors. In contrast to 2D cell cultures, we successfully isolated and characterized EVs from whole brain rat tissue (BEV) to study the therapeutic potential of endogenous EVs. We showed that BEVs decrease cytotoxicity in an ex vivo oxygen glucose deprivation (OGD) brain slice model of HI in a dose- and time-dependent manner. The minimum therapeutic dosage was determined to be 25 μg BEVs with a therapeutic application time window of 4–24 h post-injury. At this therapeutic dosage, BEV treatment increased anti-inflammatory cytokine expression. The morphology of microglia was also observed to shift from an amoeboid, inflammatory phenotype to a restorative, anti-inflammatory phenotype between 24–48 h of BEV exposure after OGD injury, indicating a shift in phenotype following BEV treatment. These results demonstrate the use of OWH brain slices to facilitate understanding of BEV activity and therapeutic potential in complex brain pathologies for treating neurological injury in neonates.  相似文献   

20.
Toxicology studies on pristine graphene are limited and lack significant correlations with actual human response. The goal of the current study was to determine the response of total colonic human tissue to pristine graphene exposure. Biopsy punches of colon tissues from healthy human were used to assess the biological response after ex vivo exposure to graphene at three different concentrations (1, 10, and 100 µg/mL). mRNA expression of specific genes or intestinal cytokine abundance was assessed using real-time PCR or multiplex immunoassays, respectively. Pristine graphene-activated genes that are related to binding and adhesion (GTPase and KRAS) within 2 h of exposure. Furthermore, the PCNA (proliferating cell nuclear antigen) gene was upregulated after exposure to graphene at all concentrations. Ingenuity pathway analysis revealed that STAT3 and VEGF signaling pathways (known to be involved in cell proliferation and growth) were upregulated. Graphene exposure (10 µg/mL) for 24 h significantly increased levels of pro-inflammatory cytokines IFNγ, IL-8, IL-17, IL-6, IL-9, MIP-1α, and Eotaxin. Collectively, these results indicated that graphene may activate the STAT3–IL23–IL17 response axis. The findings in this study provide information on toxicity evaluation using a human-relevant ex vivo colon model and serve as a basis for further exploration of its bio-applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号