首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 506 毫秒
1.
将纳米ZnO粉末和Al粉球磨后冷压成Al-ZnO预制块,然后将其加到Al-Zn-Cu熔体中进行Al-ZnO原位反应,制备出纳米Al2O3颗粒增强Al-Zn-Cu基复合材料。能谱面扫描分析和透射电镜观察结果表明,复合材料由纳米Al2O3颗粒和Al2Cu析出相两种颗粒/析出相组成。纳米Al2O3颗粒通过异质形核和晶界钉扎,细化了Al-Zn-Cu合金晶粒组织和Al2Cu析出相。原位纳米Al2O3颗粒的生成提高了基体合金的拉伸性能,轧制+热处理使Al2O3/Al-Zn-Cu复合材料的拉伸强度比相同处理的基体合金提高约100%,总伸长率提高约98%。  相似文献   

2.
When elemental Ti and B powders were added to molten Al at above 1000°C, fine in situ TiB2 particulates were formed through Al–Ti–B exothermic reaction. By optimising the nucleation of TiB2, the tensile and yield strengths of a synthesised Al–15Vf%TiBs composite were twice that of matrix material. Modification of Al-matrix with 4.5 wt%Cu tripled the tensile and yield strengths at peak-aged condition. Owing to the co-presence of brittle Al3Ti flakes with TiB2 particles in the composites synthesised by the Al–Ti–B system, ductility was reduced to 68% and 84% in composites with Al- and Al–Cu matrices, respectively. When the (Ti + B) mixture was incorporated with 3 wt%C, TiB2 and TiC reinforcing phases were simultaneously produced in the composite with Al–Cu matrix. Such an approach reduced Al3Ti compound in the composite considerably. Although the presence of Cu in the composite was found to promote the formation of Al3Ti, its effect on the fluidity caused the melt recovery to increase from 33% to 52%.  相似文献   

3.
为研究纳米颗粒增强铝基复合材料的高温蠕变特性,基于6063Al-Al2(SO4)3体系,采用超声化学原位合成技术,制备出不同Al2O3体积分数(5%、7%)的纳米Al2O3/6063Al复合材料,通过高温蠕变拉伸试验测试其高温蠕变性能,利用XRD、OM、SEM及TEM分析其微观形貌。结果表明:施加高能超声可显著细化增强体颗粒并提高其分布的均匀性,所生成的Al2O3增强颗粒以圆形或近六边形为主,尺寸为20~100nm;纳米Al2O3/6063Al复合材料的名义应力指数、表观激活能和门槛应力值与基体相比大幅提高,均随着增强体体积分数的增加而提高,表明纳米Al2O3/6063Al复合材料的抗蠕变性能提高;纳米Al2O3/6063Al复合材料的真应力指数为8,说明复合材料蠕变机制符合微结构不变模型,即受基体晶格扩散的控制;纳米Al2O3/6063Al复合材料的高温蠕变断口特征以脆性断裂为主,高应力下形成穿晶断裂,低应力下形成沿晶断裂和晶界孔洞;纳米Al2O3/6063Al复合材料的主要强化机制为位错强化与弥散强化。  相似文献   

4.
Z.H. Zhu  M.J. Sha  M.K. Lei   《Thin solid films》2008,516(15):5075-5078
1 mol%Er3+–10 mol%Yb3+ codoped Al2O3 thin films have been prepared on thermally oxidized SiO2/Si(110) substrates by a dip-coating process in the non-aqueous sol–gel method from the hydrolysis of aluminum isopropoxide [Al(OC3H7)3] under isopropanol environment. Addition of N,N-dimethylformamide (DMF) as a drying control chemical additive (DCCA) into the sol suppresses formation of the cracks in the Er3+–Yb3+ codoped Al2O3 thin films when the rare-earth ion is doped with a high doping concentration. Homogeneous, smooth and crack-free Er3+–Yb3+ codoped Al2O3 thin films form at the conditions by a molar ratio of 1:1 for DMF:Al(OC3H7)3. A strong photoluminescence spectrum with a broadband extending from 1.400 to 1.700 µm centered at 1.533 µm is obtained for the Er3+–Yb3+ codoped Al2O3 thin films, which is unrelated to the addition of DMF. Controllable formation of the Er3+–Yb3+ codoped Al2O3 thin films may be explained by the fact that the DMF assisted the deprotonation process of Al–OH at the surfaces of gel particles, resulting in enhancement of the degree of polymerization of sols and improvement of the mechanical properties of gel thin films.  相似文献   

5.
Dense TiC–Al2O3–Al composite was prepared with Al, C and TiO2 powders by means of electric field-activated combustion synthesis and infiltration of the molten metal (here Al) into the synthesized TiC–Al2O3 ceramic. An external electric field can effectively improve the adiabatic combustion temperature of the reactive system and overcome the thermodynamic limitation of reaction with x < 10 mol. Thereby, it can induce a self-sustaining combustion synthesis process. During the formation of Al2O3–TiC–Al composite, Al is molten first, and reacted with TiO2 to form Al2O3, followed by the formation of TiC through the reaction between the displaced Ti and C. Highly dense TiC–Al2O3–Al with relative density of up to 92.5% was directly fabricated with the application of a 14 mol excess Al content and a 25 V cm−1 field strength, in which TiC and Al2O3 particles possess fine-structured sizes of 0.2–1.0 μm, with uniform distribution in metal Al. The hardness, bending strength and fracture toughness of the synthesized TiC–Al2O3–Al composite are 56.5 GPa, 531 MPa and 10.96 MPa m1/2, respectively.  相似文献   

6.
The corrosion of magnesia–chrome (MgO–Cr2O3) brick in molten MgO–Al2O3–SiO2–CaO–FetO slag has been characterized using a dynamic rotary slag corrosion testing for various test cycles at 1650 °C. The open porosity decreases from 15.3 to 4.0% for three cycles, then it gradually increases from 4.0 to 4.8% when the test is extended to nine cycles, in which the permeating depth of the slag maintains at about 20 mm. The XRD pattern of the permeated layer shows the presence of the MgO, MgCr2O4 and CaMgSiO4 phases. In the interior of the permeating layer cracks are formed and corrosion starts at the pores and cracks of MgO and decreases gradually. However, at 20–40 mm beneath the permeated layer edge, different shapes of MgO particles are found.  相似文献   

7.
Thin films of the aluminum oxide (Al2O3)–titanium oxide (TiO2) system including Al2O3, TiO2, and Al2O3/TiO2 were prepared by radio-frequency (r.f.) magnetron sputtering using ceramic targets of Al2O3, TiO2, and Al2O3/TiO2 composites with different Al2O3/TiO2 ratio. These films were studied at different substrate temperatures, r.f. powers, and annealing temperatures. Composition, microstructure, thermomechanical property of internal stress, and mechanical property of scratch adhesion, were evaluated. A thin film with a dielectric constant of 62 and a loss tangent of 0.012 was obtained at 500 °C from a 10/90 target. This thin film remained the high dielectric constant of TiO2, but had an improvement in the dielectric loss tangent. Al2O3-containing films had a higher resistivity and breakdown field, which was improved further by annealing. Optical properties, such as refractive index and optical transmittance, were also investigated.  相似文献   

8.
Fe/Al2O3复合材料的制备和性能   总被引:1,自引:0,他引:1  
用石墨埋烧方法制备Fe/Al2O3复合材料,对其力学性能和微观结构进行了分析。结果表明:Fe/Al2O3复合材料的弯曲强度与断裂韧性均随Al2O3含量的升高先升高后降低,当Al2O3含量(质量分数)为70%时,其弯曲强度与断裂韧性分别达到602.49 MPa和9.33 MPa·m1/2,其硬度随Al2O3含量先降低后升高。在烧结过程中在Fe颗粒周围形成一种成分为FeO与FeAl2O4的壳体,在壳体与Fe颗粒之间存在微裂纹缺陷。壳体的形成和壳体与金属颗粒间的微裂纹钝化了外部应力,从而提高了复合材料的韧性。  相似文献   

9.
TiB2–Al2O3 composites with Ni–Mo as sintering aid have been fabricated by a hot-press technique at a lower temperature of 1530 °C for 1 h, and the mechanical properties and microstructure were investigated. The microstructure consists of dispersed Al2O3 particles in a fine-grained TiB2 matrix. The addition of Al2O3 increases the fracture toughness up to 6.02 MPa m1/2 at an amount of 40 vol.% Al2O3 and the flexural strength up to 913.86 MPa at an amount of 10 vol.% Al2O3. The improved flexural strength of the composites is a result of higher density than that of monolithic TiB2. The increase of fracture toughness is a result of crack bridging by the metal grains on the boundaries, and crack deflection by weak grain boundaries due to the bad wetting characters between Ni–Mo and Al2O3.  相似文献   

10.
Cu-Al2O3复合材料具有优异的传导性能和力学性能,在耐磨材料领域具有广阔的应用前景。为进一步提升电摩擦条件下复合材料的耐电弧侵蚀性能,本文采用内氧化法与粉末冶金法相结合制备了不同碳纳米管(CNTs)含量的CNTs/Cu-Al2O3复合材料,观察了CNTs/Cu-Al2O3复合材料中增强相的分布及其与基体界面结合情况,研究了添加不同含量CNTs对Cu-Al2O3复合材料传导性能和力学性能的影响,重点探究了CNTs/Cu-Al2O3复合材料的耐电弧侵蚀机制。结果表明:原位生成的纳米Al2O3颗粒钉扎位错及对CNTs分布具有调控作用,使CNTs弥散分布在铜基体中。与Cu-Al2O3复合材料相比,CNTs/Cu-Al2O3复合材料燃弧时间和燃弧能量明显降低,波动更平稳。在电弧侵蚀过程中,...  相似文献   

11.
In this article, modeling and optimizing of factors affecting erosion–corrosion wear of aluminum alloy A6063 reinforced with (Al2O3/TiC) particles have been determined by experimental design method. The erosion–corrosion wear characteristics and mechanism of AA6063–(TiC/Al2O3) with experimental parameters namely; type and concentration of corrosive media in the slurry, erosion speed and time have been investigated. Two models for reinforced and unreinforced alloys were applied to describe the influences of these factors on the erosion behavior of alloys. The erosion–corrosion mechanisms of the AA6063–(TiC/Al2O3) were dominated by particles erosion wear in alkaline slurry, and by the interaction of particle erosion wear and medium corrosion in acidic slurry. The results of experimental work are coinciding with that of calculated ones confirming the successful modelization.  相似文献   

12.
Spray-formed Al–Fe alloys having undergone high-speed deformation were examined under a high-voltage electron microscope. Two types of specimens were examined; one containing fine Al13Fe4 particles, and the other containing large particles. In the former specimen, deformation is found to proceed in three patterns, depending on specimen thickness and strain rate: (1) without deformation of the Al13Fe4; (2) breaking of the Al13Fe4; or (3) melting of the Al13Fe4. Local melting is found to alter some of the Al13Fe4 particles, to impart five-fold symmetry in diffraction or an amorphous structure. In the latter specimen, introduction of glide dislocations enabled us to determine a shear system in the mc102 monoclinic c2/m crystal of Al13Fe4. On the bases of these observations, the mechanism of high-speed deformation is discussed while taking into account the highly stressed and/or heated states of Al13Fe4 embedded in Al matrix.  相似文献   

13.
以Al2O3陶瓷成型体为基体,通过化学气相反应在陶瓷体内原位生长碳纳米管(CNTs),制备出CNTs/Al2O3陶瓷复合材料。结果表明,Al2O3陶瓷体中均匀分布有可观量的多壁CNTs,碳管根部嵌于Al2O3晶粒间并从晶粒表面生长出。在Al2O3陶瓷成型体中原位生长CNTs需严格控制生长条件,尤其是生长温度(850℃),温度过高和过低都难以长出CNTs,此外造孔剂、碳源和催化剂也影响CNTs的原位生长。对原位生长的CNTs/Al2O3复合体进一步高温烧结获得致密化的复合材料,其导电率达3.7 S/m,较纯Al2O3提高13个数量级。在陶瓷成型体中原位生长CNTs是一步法制备CNTs/陶瓷复合材料的新方法,可用于发展高性能的结构陶瓷和具有导电导热等多功能特性的新型陶瓷复合材料。  相似文献   

14.
Niobium aluminide-based composites reinforced with in situ and externally added Al2O3 and TiC particulates were fabricated by hot-pressed sintering at 1400 °C. In particular, Nb2Al–Al2O3–TiC in situ composites were successfully obtained from the raw powder mixtures of Nb60Al40 (in at.%)–TiO220C8 (in wt.%) by means of this process. The influences of ceramic particulates on the microstructures, flexural strength and fracture toughness were examined. The experimental results indicate that the presence of ceramic particulates yielded a remarkable improvement in both the strength and fracture toughness in comparison with previous results for monolithic niobium aluminide compounds.  相似文献   

15.
The absence of a chemical reaction at an interface is conventionally thought to be an important criterion in producing a tough ceramic matrix composite (CMC). As a result of this criterion, interphases in CMCs were chosen on the basis of their chemical reactivity. A weak interface results in crack deflection, crack bridging, and, in fiber-reinforced ceramics, fiber pullout, resulting in an increased fracture toughness. In this paper, we present microstructural observations on alumina (Al2O3)–barium zirconate (BaZrO3) laminated composites wherein the reaction products that develop during processing resulted in sharp interfaces and appear to be weak enough to deflect cracks. These in situ reaction products in Al2O3–BaZrO3 laminated composites were characterized with the use of a scanning electron microscope, an electron microprobe, and a transmission electron microscope. The phases that develop, ZrO2, BaO·Al2O3, and BaO·6 Al2O3, produced sharp interfaces and are arranged in a sequence that could be predicted by using information from the phase diagram.  相似文献   

16.
The effect of Al2O3 particles on microhardness and room-temperature compression properties of directionally solidified (DS) intermetallic Ti–46Al–2W–0.5Si (at.%) alloy was studied. The ingots with various volume fractions of Al2O3 particles and mean 22 interlamellar spacings were prepared by directional solidification at constant growth rates ranging from 2.78×10−6 to 1.18×10−4 ms−1 in alumina moulds. The ingots with constant volume fraction of Al2O3 particles and various mean interlamellar spacings were prepared by directional solidification at a growth rate of 1.18×10−4 ms−1 and subsequent solution annealing followed by cooling at constant rates varying between 0.078 and 1.889 K s−1. The mean 22 interlamellar spacing λ for both DS and heat-treated (HT) ingots decreased with increasing cooling rate according to the relationship λ−0.46. In DS ingots, microhardness, ultimate compression strength, yield strength and plastic deformation to fracture increased with increasing cooling rate. In HT ingots, microhardness and yield strength increased and ultimate compression strength and plastic deformation to fracture decreased with increasing cooling rate. The yield stress increased with decreasing interlamellar spacing and increasing volume fraction of Al2O3 particles. A linear relationship between the Vickers microhardness and yield stress was found for both DS and HT ingots. A simple model including the effect of interlamellar spacing and increasing volume fraction of Al2O3 particles was proposed for the prediction of the yield stress.  相似文献   

17.
针对特高压气体绝缘金属封闭开关设备(GIS)用Al2O3/环氧树脂(EP)复合材料,采用非等温差示扫描量热(DSC)法研究了Al2O3/EP复合材料的固化行为,对其DSC曲线进行分峰处理,利用等转化率方法求得不同反应阶段的表观活化能。根据Málek判据得到Al2O3/EP复合材料的固化行为符合的模型类型,并求得不同反应阶段的各个动力学参数及固化动力学方程。利用SEM观察Al2O3/EP复合材料的微观形貌,通过动态热力学分析仪(DMA)分析其动态热力学性能和高温蠕变性能,利用时温等效预测了Al2O3/EP复合材料的长时蠕变行为。结果表明,DSC热流曲线表现为双峰分布;Al2O3/EP复合材料的两个反应阶段的表观活化能分别为35.3 kJ/mol及48.1 kJ/mol,Sestak-Berggren自催化模型能够很好地描述Al2O3/EP复合材料体系在不同固化阶段的固化行为。Al2O3颗粒均匀分散于树脂基体中,填料的加入使裂纹发生偏转。Al2O3/EP复合材料的储能模量(E')随温度的升高而降低,损耗因子(tanδ)峰值对应的玻璃化转变温度(Tg)为120.03℃。Al2O3/EP复合材料的抗蠕变性能随着拉伸应力和温度的增加而减弱,随着时间的延长,其蠕变速率减小。   相似文献   

18.
以双酚A型环氧树脂(E51)和双酚A型氰酸酯(BCE)为原料,研究E51改性BCE共固化反应机制。同时,以E51-BCE为基体树脂,溶胶-凝胶法(Sol-Gel)自制Al2O3为增强体,制备Al2O3改性E51-BCE (Al2O3/E51-BCE)复合材料。通过非等温DSC确定了E51-BCE体系的固化工艺及固化反应动力学,并根据Kissinger法和Ozawa法求得体系的表观活化能分别为66.13 kJ/mol和69.46 kJ/mol。利用红外光谱跟踪固化体系在起始固化温度为160℃、 180℃时的反应历程,结果表明:起始固化温度在160℃时,以E51与BCE直接反应为主;起始固化温度在180℃时, BCE反应活性提高,以BCE自聚反应为主,生成三嗪环的速率加快,少量的BCE直接与E51反应生成恶唑啉结构。对Sol-Gel法自制Al2O3进行FTIR和TEM表征,结果表明:Al2O3为短纤维状的晶体,表面含有少量羟基。SEM结果显示:Al2O3为分散相,与基体间界面模糊, Al2O3/E51-BCE复合材料的脆断面裂纹不规则,为典型的韧性断裂;当Al2O3掺杂量为3wt%时, Al2O3在基体中分散均匀, Al2O3/E51-BCE复合材料的冲击强度和弯曲模量分别为24.2 kJ/m2和2.54 GPa,比基体树脂的冲击强度和弯曲模量分别提高53.65%和22.12%,力学性能得到明显改善。  相似文献   

19.
利用Al-TiO2-TiC体系,通过机械球磨和反应热压制备出Ti3AlC2与Al2O3两相原位内生成增强TiAl3金属基复合材料。借助DSC、XRD、SEM和TEM研究了复合材料的反应机制、显微组织、力学性能及抗氧化性能。结果表明,球磨50h后的复合粉末经1 250℃/50 MPa保温10min烧结后可得到组织均匀细小且致密的Ti3AlC2-Al2O3/TiAl3复合材料,其密度、维氏硬度、室温三点弯曲强度、断裂韧性及压缩强度分别为3.8g/cm3、8.4GPa、658.9 MPa、7.9 MPa·m1/2和1 742.0 MPa,1 000℃的高温压缩强度为604.1 MPa。Ti3AlC2-Al2O3/TiAl3复合材料的增韧机制主要包括Ti3AlC2和Al2O3颗粒的剥离、Ti3AlC2相导致的裂纹偏转和桥接以及Ti3AlC2颗粒的变形及层裂。Ti3AlC2-Al2O3/TiAl3复合材料在700~1 000℃温度区间内生成的氧化层虽不致密,但仍表现出优异的抗高温循环氧化性能。  相似文献   

20.
The effects of volume fraction, Al2O3 particle size and effects of porosity in the composites on the abrasive wear resistance of compo-casting Al alloy MMCs have been studied for different abrasive conditions. It was seen that porosity in the composites is proportional to particle content. In addition, process variables like the stirring speed, and the position and diameter of the stirrer affect of the porosity content in a way similar to that observed for particle content. In addition, the abrasive wear rates of composites decreased more rapidly with increase in Al2O3 volume fraction in tests performed over 80 grade SiC abrasive paper than in tests conducted over 220 grade SiC abrasive paper. Furthermore, the wear rates decreased with increase in Al2O3 size for the composites containing the same amount of Al2O3. Hence, it is deduced that aluminium alloy composites reinforced with larger Al2O3 particles are more effective against abrasive wear than those reinforced with smaller Al2O3 particles. At the same time the results show that the beneficial effects of hard Al2O3 particles on wear resistance far surpassed that of the sintered porosity in the compocasting metal-matrix composites (MMCs). Nevertheless, the fabrication of composites containing soft particles such as graphite favors a reduction in the friction coefficient. For this reason graphite and copper were used in the matrix in different amounts to detect their effect on wear resistance. Finally, it was seen that wear rate of the composites decreased considerably with graphite additions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号