首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
Microcellular Polylactide (PLA) and PLA/poly(butylenes succinate) (PBS) foams were prepared by batch foaming process with supercritical carbon dioxide. The introduced PBS phase was immiscible with the PLA matrix and separated as domains. The study of CO2 solubility in PLA and PLA/PBS blends indicated the addition of PBS decreased the gas solubility due to the poor affinity of CO2 for PBS. The crystallization behavior of PLA was enhanced by small amount of PBS with lower cold crystallization temperature and higher crystallinity. However, separated PBS droplets led to less perfect and small crystallites, which showed greatly effect for the PLA foaming process. The investigation on the foaming conditions dependence indicated the PLA/PBS blends required higher temperature and longer time for the cell growth, which were nucleated around the interface between PLA and PBS. With less CO2 content in the PLA or PLA/PBS blends after different desorption time, the final cell morphology exhibited more uniform size distribution with bigger average cell size and smaller cell density. Different from the well closed-cell structure for neat PLA foam, the PLA/PBS foam presented open cell structure due to the cell nucleation around the PLA/PBS interface and the lower melt strength of PBS phase.  相似文献   

2.
The effects of process variables on the microcellular structure and crystallization of foamed polypropylene (PP) with supercritical CO2 as the foaming agent were investigated in this article. The cell size increased and the cell density reduced with increased foaming temperature. Differently, both the cell diameter and cell density increased as saturation pressure increased. DSC curves showed that the melting peak was broadened when supercritical CO2 foaming PP. Furthermore, the width at half-height of the melting peak increased, the melting peak moved to higher temperature, and the melting point and crystallinity enhanced as the foaming temperature lowered and the saturation pressure enhanced.  相似文献   

3.
This study investigated the melting and crystallization behaviors of polylactide (PLA) under high-pressure CO2, N2, and helium (He) using a high-pressure differential scanning calorimeter and a wide-angle X-ray diffractometer. The results showed that the PLA's melting temperature was depressed only when contacted with pressurized CO2 where at high CO2 pressures the lubricating gas molecules induced more imperfect melt and cold crystals during the cooling and heating cycle. PLA's melt crystallization was analyzed during both isothermal and nonisothermal processes. In contrast to the effect of dissolved CO2 that expedited the PLA's crystallization rate, N2 showed almost a neutral impact on the PLA's crystallization kinetics. Because of the lower solubility, N2 gas dissolved in the PLA had a diminutive plasticization effect, and thereby it could only counterbalance its negative hydraulic pressure effect. Moreover, as the helium pressure increased, the PLA's final crystallinity was reduced due to the dominant effect of helium's hydraulic pressure.  相似文献   

4.
Microcellular foaming of biodegradable and biocompatible PLA/starch composites in supercritical/compressed CO2 has been studied. The purpose of this study is to explore the potential application of this kind of materials in medical materials or drug containers. The rate of CO2 uptake and CO2 equilibrium concentration in PLA/starch composites were studied by performing sorption and desorption experiments. The effects of a series of variable factors, such as saturation time and saturation temperature on the foaming morphology were studied through SEM observation and density measurement. The experimental results show that, while keeping other variables unchanged, longer saturation time leads to reduced bulk foam densities and different saturation pressures result in different bulk foam densities. The crystallinity of PLA–starch sample was characterized by differential scanning calorimetry. It indicates that the foaming treatment with supercritical CO2 increased the crystallinity of PLA/starch composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
In this study, the effect of macromolecular chain‐branching on poly(lactic acid) (PLA) rheology, crystallization, and extrusion foaming was investigated. Two PLA grades, an amorphous and a semi‐crystalline one, were branched using a multifunctional styrene‐acrylic‐epoxy copolymer. The branching of PLA and its foaming were achieved in one‐step extrusion process. Carbon dioxide (CO2), in concentration up to 9%, was used as expansion agent to obtain foams from the two PLA branched using chain‐extender contents up to 2%. The foams were investigated with respect to their shear and elongational behavior, crystallinity, morphology, and density. The addition of the chain‐extender led to an increase in complex viscosity, elasticity, elongational viscosity, and in the manifestation of the strain‐hardening phenomena. Low‐density foams were obtained at 5–9% CO2 for semi‐crystalline PLA and only at 9% CO2 in the case of the amorphous PLA. Differences in foaming behavior were attributed to crystallites formation during the foaming process. The rheological and structural changes associated with PLA chain‐extension lowered the achieved crystallinity but slightly improved the foamability at low CO2 content. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

6.
Supercritical CO2 fluids (SCF CO2) assisting melting of poly(vinylidene fluoride) (PVDF) and the SCF CO2 pressure affecting surface and bulk morphology, melting and crystallization of PVDF were investigated by means of SEM, AFM, FTIR, WAXD, DSC and SAXS. Three SCF CO2 conditions at 84, 283, and 476 atm all at 140 °C for 30 min were studied. Morphological changes, induced by melting of PVDF under SCF CO2 and recrystallization during depressurization of CO2, were found. The level of the CO2-assisted melting of PVDF was found to increase with increasing pressure. SEM and AFM images showed that the 84 atm of CO2 assisted melting on the surface of PVDF film while both 283 and 476 atm of CO2 gave rise to melting of the whole film. FTIR spectra and WAXD patterns found that the hot-pressed PVDF film exhibited predominant α-crystalline form, which is one of the reported four crystalline forms including α, β, γ, and δ forms, and did not transform to other crystalline form(s) upon the SCF CO2 treatments although they lowered the bulk crystallinities of PVDF. SEM images showed that the SCF CO2 treatments at 283 and 476 atm resulted in foam formations in PVDF, with smaller foam cells resulting from the lower pressure treatment. SAXS data found that the thickness of crystalline layer in the lamellar stacks increased while that of amorphous layers insignificantly changed after SCF CO2 treatments at 283 and 476 atm, as compared with untreated PVDF. SAXS and DSC data suggested the presence of a bimodal distribution of crystal size of PVDF after SCF CO2 treatments.  相似文献   

7.
The effects of nanoclay (Cloisite 30B) on the foamability of polylactide (PLA) were investigated in continuous extrusion foaming using supercritical CO2 as the blowing agent. PLA samples containing 0–5 wt% of nanoclay were prepared. The X-ray diffraction and transmission electron microscopy images showed a high degree of exfoliation of clay nanoparticles within PLA. A single-screw tandem extruder was used to produce foams with 5 wt% and 9 wt% supercritical CO2. The crystallization behavior of the samples was analyzed using regular and high-pressure differential scanning calorimeters and using a rotational rheometer under small amplitude oscillatory shearing. In the presence of dissolved CO2, clay, and shear action, the PLA crystallization kinetics was significantly enhanced. The foamed results showed that both the cell density and the expansion ratio were greatly promoted with increased clay content and the dissolved CO2, as well as by the possibly nucleated crystals. By further use of Cloisite 20A nanoclay particles with poor disperse-ability in PLA, we also proved that a high degree of dispersion significantly promoted the cell density and the expansion ratio of the PLA nanocomposites. Further, by varying the temperature profile within second extruder of the tandem-line, it was confirmed that the more rapid crystallization along the second extruder was responsible for the enhanced cell density and expansion ratio. The final crystallinity of the foamed samples was also enhanced at higher expansion ratios due to the strain induced crystallization.  相似文献   

8.
M. Nofar  W. Zhu  C.B. Park 《Polymer》2012,53(15):3341-3353
In this study, the crystallization behavior of polylactide (PLA) was investigated in the presence of dissolved CO2 using high-pressure and regular differential scanning calorimeter. The isothermal and non-isothermal melt crystallization results showed that increasing the CO2 pressure decreased the crystallization half-time. During isothermal and low-cooling-rate non-isothermal crystallization, a very high crystallinity was achieved at 15 bar CO2 pressure by facilitating more perfect crystal formation with the plasticization effect of CO2 while limiting the crystal nucleation rate. At higher CO2 pressures, a larger number of less close-packed crystals were formed due to chain entanglement, and consequently, the final crystallinity was decreased. The non-isothermal results at high cooling rates showed the total crystallinity decreased for all CO2 contents, because of less time given for crystallization. Also the effects of the CO2 pressure and the cooling rate on Tc and Tg were investigated.  相似文献   

9.
Erdogan Kiran 《Polymer》2008,49(7):1853-1859
Morphological changes that take place in poly(?-caprolactone) upon exposure to carbon dioxide at high pressures have been explored as a function of pressure and temperature. SEM and DSC results point to a competition between CO2-modulated crystallization and pressure-induced phase separation which leads to unique morphologies. At 293 K, exposure to CO2 at pressures up to 45 MPa leads to recrystallization resulting in higher level of crystallinity and higher melting temperatures. Highest crystallinity levels along with distinct crystal morphology were observed after exposure to CO2 at 308 K and 21 MPa. At a higher pressure at this temperature (308 K/34 MPa) polymer undergoes melting, and foaming is achieved during depressurization prior to solidification. At 323 K, the polymer is found to display unique crystal morphology with concave crystal geometry as well as porous domains. The results are discussed in terms of the crystallization and phase separation paths that are followed during exposure to CO2 and the depressurization stages.  相似文献   

10.
In this study, poly(ethylene terephthalate) (PET), an important packaging material for carbonated beverages, was investigated on its glassy relaxations and melt crystallizations in CO2 in a high-pressure differential scanning calorimeter (PDSC) and a high-pressure thermostat chamber as a function of CO2 pressure, time, CO2 depressurization rate, and PET crystallinity. DSC measurements found a low glass transition temperature (TgL) at near 50 °C in the wholly amorphous PET and a high glass transition temperature (TgH) at near 70 °C in the PET sample with a fairly high crystallinity (Xc 50%). Both TgL and TgH decreased with increasing time in CO2, attributed to plasticization by CO2. PET sample with a moderate crystallinity (Xc 42%), however, exhibited both TgL and TgH corresponding to the relaxations of the dual amorphous phases as confirmed by dynamic mechanical analysis, with the TgL assigned to the free amorphous phase and the TgH to the constrained amorphous phase. The TgL is much farther apart from TgH than those obtained in N2. The TgL and TgH in PET with a moderate crystallinity unexpectedly appeared to be insignificantly varied with time in CO2; however, the magnitude of the TgL signal increased but the TgH signal decreased with increasing time in CO2, attributed to disentanglement of polymer chains by CO2. Dual melting peaks in PET were found after nonisothermal crystallization from the melt in CO2. Temperature-modulated DSC (TMDSC) analysis indicated that melting-recrystallization model and double lamellar thickness model were both responsible for the appearance of the dual melting peaks.  相似文献   

11.
The effect of different annealing treatments with supercritical carbon dioxide (SCCO2) on the structural and mechanical properties of semicrystalline poly‐L ‐lactic acid (L ‐PLA) was investigated. 2000, 27,000, 100,000, and 350,000 g mol?1 molecular weight L ‐PLA polymers were used in the study. The solid‐state processing of L ‐PLA at temperatures lower than the effective melting point led to solvent‐ and thermal‐induced crystallization. Solvent‐induced and isothermal crystallization mechanisms could be considered similar regarding the increase of polymer chain mobility and mass‐transfer in the amorphous region; however, quite different microstructures were obtained. SCCO2 solvent‐induced crystallization led to polymers with high crystallinity and melting point. On the contrary, SCCO2 thermal‐induced crystallization led to polymers with high crystallinity and low melting point. For these polymers, the hardness increased and the elasticity decreased. Finally, the effect of dissolving SCCO2 in the molten polymer (cooling from the melt) was analyzed. Cooling from the melt led to polymers with high crystallinity, low melting point, low hardness, and low elasticity. Distinctive crystal growth and nucleation episodes were identified. This work also addressed the interaction of SCCO2‐drug (triflusal) solution with semicrystalline L ‐PLA. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
BACKGROUND: The thermal behaviour of poly(lactic acid) (PLA) in contact with compressed CO2 was studied using high‐pressure differential scanning calorimetry. In particular, the effect of annealing below and above the glass transition temperature (Tg) on the glass transition, cold crystallization and melting temperatures was studied systematically as a function of annealing time and pressure. RESULTS: The effect of compressed CO2 on the thermal properties of PLA is time dependent. Annealing below Tg decreases the temperature and enthalpy of cold crystallization. Similar, but more evident, behaviours are observed when annealing above Tg. Crystallization temperature and enthalpy during cooling decrease with increasing pressure, and the peak is narrower. CONCLUSION: Annealing PLA in the presence of compressed CO2 accelerates cold crystallization, but retards crystallization during cooling. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
The effect of CO2 on the isothermal crystallization kinetics of poly(L‐lactide), PLLA, was investigated using a high‐pressure differential scanning calorimeter (DSC), which can perform calorimetric measurements while keeping the sample polymer in contact with pressurized CO2. It was found that the crystallization rate followed the Avrami equation. However, the crystallization kinetic constant was changed depending upon the crystallization temperature and concentration of CO2 dissolved in the PLLA. The crystallization rate was accelerated by CO2 at the temperature in the crystal‐growth rate controlled region (self‐diffusion controlled region), and depressed in the nucleation‐controlled region. CO2 has also decreased the glass transition temperature, Tg, and the melting temperature, Tm. As a result, the CO2‐induced change in the crystallization rate can be predicted from the magnitudes of depression of both Tg and the equilibrium melting temperature. The crystalline structure and crystallinity of polymers crystallized in contact with pressurized CO2 were also investigated using a wide angle X‐ray diffractometer (WAXD). The resulting crystallinity of the sample was increased with the pressure level of CO2, although the presence of CO2 did not change the crystalline structure.  相似文献   

14.
将三官能团环氧树脂作为交联剂用于聚乳酸(PLA)的挤出化学发泡成型,研究了三官能环氧树脂含量对PLA熔融结晶性能、交联度、熔体强度的影响以及对PLA化学挤出发泡试样的泡孔形态的影响。结果表明,随着三官能环氧树脂含量的增加,冷结晶温度提高,且添加三官能环氧树脂后熔融峰由单峰变成双峰,结晶峰面积、熔融峰面积以及结晶度都是先增加后减少的趋势;PLA体系的交联度和熔体强度的显著提高随着三官能团环氧树脂的增加;PLA体系泡孔破裂减少,开孔率减少,泡孔尺寸先减小后增大;较佳挤出机头温度为170~175 ℃。  相似文献   

15.
Abstract

In this paper, nano-CaCO3 was added into short carbon fibre/polypropylene composites in order to improve foamability. According to differential scanning calorimetry results, there were slight influences on the melting point and crystallinity with the addition of nano-CaCO3. The increase in melt strength with nano-CaCO3 content could be qualitatively certified by torque rheology curves. The dispersion of nano-CaCO3 was determined by scanning electron micrograph. Depressurisation foaming method was used to foam the composites using supercritical CO2. Characterisation of the cell morphology was conducted to investigate the effects of the nano-CaCO3 content and processing conditions. Concerning the effect of nano-CaCO3 content, it is found that the mean cell diameter first decreased and then increased, whereas the cell density showed the opposite trend. Moreover, increasing saturation pressure or decreasing foaming temperature made the cell size smaller and the cell density larger.  相似文献   

16.
This study has been dedicated to the foaming of modified poly (lactic acid) with supercritical CO2. The first part of this work consisted in a rheological modification of neat PLA through chain extension. Improvement of the melt viscosity and elasticity has been achieved by the use of an epoxy additive during a reactive extrusion process. Rheological characterizations confirmed an increase of the melt strength due to this chain extension process. Foaming was then performed on the neat and modified PLAs using a batch process with supercritical CO2 as blowing agent. The investigation of the foaming temperature revealed an enlarged processing window for modified PLAs compared to neat PLA. Depending on the foaming parameters, foams with a cellular structure ranging from macro scale to micro scale have been obtained. A concomitant effect of the CO2-plasticization and the crystallisation on the melt rheology could explain this wide range of cellular morphologies.  相似文献   

17.
Controlling sandwich‐structure of poly(ethylene terephthalate) (PET) microcellular foams using coupling of CO2 diffusion and CO2‐induced crystallization is presented in this article. The intrinsic kinetics of CO2‐induced crystallization of amorphous PET at 25°C and different CO2 pressures were detected using in situ high‐pressure Fourier transform infrared spectroscopy and correlated by Avrami equation. Sorption of CO2 in PET was measured using magnetic suspension balance and the diffusivity determined by Fick's second law. A model coupling CO2 diffusion in and CO2‐induced crystallization of PET was proposed to calculate the CO2 concentration as well as crystallinity distributions in PET sheet at different saturation times. It was revealed that a sandwich crystallization structure could be built in PET sheet, based on which a solid‐state foaming process was used to manipulate the sandwich‐structure of PET microcellular foams with two microcellular or even ultra‐microcellular foamed crystalline layers outside and a microcellular foamed amorphous layer inside. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2512–2523, 2012  相似文献   

18.
Polyvinyl acetate (PVAc) is a kind of CO2-philic materials with high solubility of CO2. For improving the supercritical carbon dioxide (Sc-CO2) foaming behavior of isotactic polypropylene (iPP), a high melt strength polypropylene (HMSPP) was prepared using styrene (St) as grafting monomer. The effect of PVAc on the preparation, rheological, crystallization and foaming behaviors of HMSPP was investigated. The high temperature gel permeation chromatography (HT-GPC) results showed that the PVAc had a promotive effect on melt grafting reaction. With the addition of PVAc, the weight-average molecular weight (Mw) of HMSPP increased from 217,158 to 240,733 g/mol. Thus, the HMSPP presented higher complex viscosity and storage modular, and lower loss angle, which indicated that the melt viscosity and melt strength of HMSPP was increased by adding PVAc. The crystallization behavior of HMSPP was investigated using differential scanning calorimetry (DSC). Double crystallization peaks were observed on the DSC cooling curves of HMSPP in the presence of PVAc, which was ascribed to incomplete molten of iPP with long chain branching (LCB) structure at low end melting temperature. Moreover, the prepared HMSPP exhibited better foaming behavior in the presence of PVAc. With the addition of PVAc, the average cell diameter of HMSPP decreased from 93 to 59 μm, and the cell density increased from 2.83?×?107 to 9.79?×?107 cell/cm3.  相似文献   

19.
Xu  Zhijuan  Lin  Xuechun  Liu  Hongbo 《Iranian Polymer Journal》2019,28(5):417-424

A polyfunctional isocyanate was prepared and was blocked by methanol to limit its premature reactivity with water or other nucleophiles. The methanol-blocked polyfunctional isocyanate was used as a cross-linking agent to improve the melt strength and foamability of poly(lactic acid) (PLA). The effect of the blocked polyfunctional isocyanate (BPI) content on the melting behavior, crystallization, degree of cross-linking, and melt strength of PLA was investigated, and the cellular morphologies of the PLA foams obtained by chemical foaming extrusion were studied, as well. The cold crystallization temperature increased with increasing BPI proportion and the melting peak changed from a single to multiple peaks upon the addition of BPI to PLA. The ∆Hc, ∆Hm, and Xc values initially increased and then decreased with increasing BPI content. It can be attributed to the effect of cross-linking on crystallization behavior of PLA. The degree of cross-linking increased with the BPI content of the PLA mixtures. The melt strength of the PLA mixture increased with increasing proportions of BPI, whose incorporation led to a decrease in the void fraction, cell size, and open cell content of the PLA foams but an increase in the cell density. When BPI was added to the PLA, the cell morphologies of the PLA mixtures were obviously enhanced.

  相似文献   

20.
In order to improve the foaming performance of pure cellulose acetate (CA), blends were prepared by mixing polylactic acid (PLA) in CA and foamed by supercritical CO2 (ScCO2) in this study. The effect of PLA content (percentage by mass of blend) on structure, thermal properties, rheological properties, foaming properties and mechanical properties of the blends was investigated. The results showed that the addition of PLA destroyed the original hydrogen bonds of CA, while the blends had good crystallization properties. At the same time, compared with pure CA, the glass transition temperature (Tg) of the blends decreased, and the initial decomposition temperature (T0) was reduced from 349.41°C (pure CA) to 334.68°C (CA/20%PLA). In addition, the rheological properties of the blends were improved, and the viscosity was reduced, which was obviously beneficial to foaming process. The pore size and density of the foamed blends both reached the maximum value at 20%PLA. The presence of PLA could degrade the mechanical properties of the blends. However, the overall drop (1.01 KJ/m2) of impact strength of the blends after foaming is much smaller than that before foaming (12.11 KJ/m2), indicating that the improvement of foaming performance was beneficial to improve its impact strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号