首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
通过在富Te环境下生长In掺杂CdZnTe晶体,实验研究了不同掺In量对晶体电学性能的影响,重点讨论了不同掺In量与晶体电阻率、载流子浓度及迁移率之间的关系.并对CdZnTe晶体中In掺杂的补偿机理进行了分析探讨.结果表明,当In掺杂量为5×1017cm-3时,得到了电阻率达1.89×1010Ω·cm的高阻CdZnTe晶体.  相似文献   

2.
以CrTe作为掺杂源、以Te作为溶剂, 用温度梯度溶液法生长了Cr掺杂的ZnTe晶锭。晶锭头部的晶粒尺寸较大(>10 mm×10 mm), 且Te夹杂相较少。Te夹杂相的大小、形状和分布可以反映晶锭中的温场分布。晶锭的径向非对称温场导致富Te相沿径向非对称分布。Te夹杂相在温度梯度作用下的热迁移会导致其相互融合长大、变长。Te夹杂相也会在晶体中引入裂纹和空洞等缺陷。部分未被掺入ZnTe中的CrTe富集于固液界面处, 表明温度梯度溶液法生长晶体时具有一定的排杂作用。Cr掺杂的ZnTe晶体的电阻率(约1000 Ω·cm)高于未掺杂的ZnTe(约300 Ω·cm)。Cr掺杂晶体在约1750 nm处的吸收峰表明Cr2+离子被成功地掺入了ZnTe中。但是Cr掺杂后晶体的红外透过率降低, 表明Cr掺杂引入了较多的缺陷。  相似文献   

3.
为了解决Cd_(0.9)Zn_(0.1)Te(CZT)晶体生长温度高、单晶率低、成分不均匀等问题,采用溶剂熔区移动法(THM)在优化工艺参数下生长了掺In的CZT晶体,在优化晶体的生长温度、固液界面处的温度梯度、原位退火过程等生长条件后,生长出直径为45 mm的低Te夹杂浓度、高电阻率、高透过率、均匀的高质量CZT晶体。X射线衍射结果显示,晶体的结晶性较好、Zn成分轴向偏析小。红外透过光谱测试结果显示,晶体内部的杂质、缺陷水平相对较少,晶体整体的红外透过率在60%左右。紫外-可见光吸收光谱测试结果也进一步表明,晶体的均匀性良好。采用红外显微镜对晶体内部的Te夹杂形貌及其尺寸进行观察,结果表明Te夹杂的尺寸主要分布在0~10μm之间。采用直流稳态光电导技术测得电子的迁移率寿命积约为8×10~(-4) cm~2/V。  相似文献   

4.
采用改进的垂直布里奇曼法(MVB)分别生长了A1掺杂和In掺杂的Cd0.9Zn0.1Te晶体,并对比分析了掺杂元素对晶体性能的影响.在相同的工艺条件下,A1掺杂晶体获得了6 × 109~2 × 1010Ω·cm的高电阻率,呈弱p或弱n型导电;In掺杂晶体电阻率在105Ω·cm数量级,呈n型导电;A1掺杂晶体在波数4000~500cm-1范围内红外透过率平直且较高,而In掺杂晶体红外透过率随波数下降而降低,在波数1250cm-1处降至零.采用A1掺杂晶片制备的探测器对241Am 59.54keV射线的能量分辨率为14%,表明所生长A1掺杂晶体基本满足了探测器材料使用要求.  相似文献   

5.
为了解决Cd0.9Zn0.1Te(CZT)晶体生长温度高、单晶率低、成分不均匀等问题, 采用溶剂熔区移动法(THM)在优化工艺参数下生长了掺In的CZT晶体, 在优化晶体的生长温度、固液界面处的温度梯度、原位退火过程等生长条件后, 生长出直径为45 mm的低Te夹杂浓度、高电阻率、高透过率、均匀的高质量CZT晶体。 X射线衍射结果显示, 晶体的结晶性较好、Zn成分轴向偏析小。红外透过光谱测试结果显示, 晶体内部的杂质、缺陷水平相对较少, 晶体整体的红外透过率在60%左右。紫外-可见光吸收光谱测试结果也进一步表明, 晶体的均匀性良好。采用红外显微镜对晶体内部的Te夹杂形貌及其尺寸进行观察, 结果表明Te夹杂的尺寸主要分布在0~10 μm之间。采用直流稳态光电导技术测得电子的迁移率寿命积约为8×10-4 cm2/V。  相似文献   

6.
CdZnTe晶体是一种性能优畀的室温核辐射探测器材料.在熔体法生长CdZnTe晶体的过程中,生长炉的内部温场分布对获得的晶体结构和性能有很大影响.根据CdZnTe晶体的生长习性,设计了三温区单晶炉,用坩埚下降法生长出CdZnTe单晶体.通过X射线衍射、红外透过率、I-V测试等分析研究,得到了红外透过率约为61%,腐蚀蚀坑密度(EPD)为104 cm-2,电阻率为109~1010 Ω·cm的Cd0.9 Zn0.1 Te单晶体.表明三温区坩埚下降法生长的单晶体结晶质量好、成分分布均匀、EPD低、红外透过性能好且电阻率高.  相似文献   

7.
通过红外透过成像研究了Cd/Zn气氛退火过程中Cd0.9Zn0.1Te∶In晶体内Te夹杂的密度及尺寸分布的演变。结果发现,Cd/Zn气氛退火前,晶体中的Te夹杂密度分布比较均匀;退火后,晶体高温端近表面区域的Te夹杂密度较退火前提高了1个数量级,而晶体内部的Te夹杂密度则较退火前降低了1个数量级,且其密度沿温度梯度方向逐渐增加。退火前,晶体表面和内部的Te夹杂的直径主要分布在1~25μm;退火后,在晶体表面,直径45μm的Te夹杂密度显著增大;而在晶体内部,直径5μm和25μm的Te夹杂密度显著增大。导致这些现象的原因是退火过程中,Te夹杂沿着温度梯度方向不断向晶体表面迁移,在迁移过程中尺寸相近的Te夹杂通过合并长大,尺寸相差较大的Te夹杂则以Ostwald熟化方式长大,并使小尺寸的Te夹杂更小。但由于熟化不充分,在Ostwald熟化长大过程中留下了很多尺寸5μm的Te夹杂颗粒。  相似文献   

8.
采用Bridgman法生长CdZnTe晶体.分别采用红外透过显微镜和正电子湮灭寿命谱仪研究了CdZnTe晶体中的Te夹杂相、Cd空位等缺陷与坩埚中的自由空间量大小的关系. 结果表明: 随着坩埚自由空间量的减小, 晶体中Te夹杂相密度从6.67×104/cm2降低到2.36×103/cm2, 且Te夹杂相尺寸减小; 晶体的正电子平均寿命值随着坩埚自由空间量的减小从325.4 ps降低到323.4 ps, 表明晶体的Cd空位浓度及微结构缺陷减少; 晶体的红外透过率和电阻率则随着坩埚自由空间量的减小大幅提高, 进一步表明坩埚中自由空间量的减小能够有效地降低晶体中的缺陷浓度.  相似文献   

9.
采用垂直Bridgman法生长了In掺杂Cd0.3Mn0.2Te晶体(CdMnTe:In)和本征的Cd0.8Mn0.2Te晶体(CdMnTe)。X射线粉末衍射、X射线双晶摇摆曲线和位错密度测试表明,所生长晶体均为立方闪锌矿结构,半峰宽为40~80arc Sec,位错密度为100~100cm^-2,结晶质量良好.In掺杂不影响晶体的结构和结晶质量。电流.电压(I-V)测试表明,CdMnTe:In晶体的电阻率为1~3×10^9Ω·cm,与CdMnTe晶体相比上升了3个数量级.近红外光透过光谱(IR transmission)研究发现In掺杂后CdMnTe晶体红外透过率降低,在波数范围4000~1000cm^-1,CdMnTe晶体红外透过率为51.2%~56.4%,而CdMnTe:In的红外透光率为15.4%~6%。  相似文献   

10.
CdZnTe晶体中微米级富Te相与PL谱的对应关系   总被引:1,自引:0,他引:1  
采用红外透过显微镜(IRTM)观察了不同条件下生长的CdZnTe晶体中微米级富Te颗粒.结合实际生长条件分析了不同富Te颗粒的产生以及形态演化.通过低温光致发光(PL)谱研究了CdZnTe晶体中杂质、缺陷的状态,以及晶体的结晶质量,并测试了相应晶体的电阻率.归纳出不同富Te颗粒的产生与对应晶体10 K温度下PL谱中特征...  相似文献   

11.
李国强  谷智  介万奇 《功能材料》2003,34(1):95-97,99
采用传统垂直布里奇曼法和Cd补偿垂直布里奇曼法,分别生长出两根尺寸为 30mm×130mm的Ccd0.9Zn0.1Te晶锭.测试了晶体的结晶质量、成分分布、位错腐蚀坑密度(EPD)、红外透过率及电阻率.结果表明,Cd补偿垂直布里奇曼法生长的晶体结晶质量好、成分分布均匀、EPD低、红外透过性能好且电阻率高.这说明Cd补偿垂直布里奇曼法是一种生长高阻值CZT晶体的优良方法.  相似文献   

12.
采用 Cd1- yZny合金作退火源,对垂直布里奇曼法生长获得的 Cd0.9Zn0.1Te晶片进行了退火处 理.实验结果表明,退火后,晶片中 Zn的径向成分偏离从 0.15at %降低到 0.05at%, Al、 Na、 Mg、 Cu等杂质的含量得到一定程度的降低,代表结晶质量的半峰宽从 182″下降到 53″,而红外透过率从 56.6%提高到 62.1%,电阻率则从 7.25× 108Ω cm提高到 2.5× 1010Ω cm.可见,在合适的条件下 对高阻值 CdZnTe晶体进行退火处理可以提高晶体的性能.  相似文献   

13.
采用垂直布里奇曼法,成功生长出大直径Hg3In2Te6(Φ=30mm)晶体。通过傅立叶红外透射光谱测试了晶锭不同部位的红外透过率,并利用X射线双晶摇摆曲线表征了晶体的结晶质量。结果表明,定向切割晶片为(111)面单晶,衍射峰位于θ=12.1665°处,半峰宽为0.0760°;中部单晶片红外透过率平均值为50%,接近Hg3In2Te6晶体的红外透过率最大值57%。位错和成分非均匀性是造成晶锭不同部位红外透过率差异的主要因素。  相似文献   

14.
采用Bridgman法生长了x为0.1,0.22和0.4的四元稀磁半导体化合物MnxCd1-xIn2Te4晶体.研究了三根晶体中相的形貌、结构、成分和Mn0.1Cd0.9In2Te4晶体中各组元沿轴向和径向的成分分布.晶体生长初始端的组织为α+β+β1,随着生长的进行,形成β相的单相区.在晶锭末端,形成In2Te3类面心立方结构化合物.组分x增大后,MnxCd1-xIn2Te4晶体的吸收边向短波方向移动,禁带宽度则线性增大.磁化率测量结果表明:晶体在高温区的x-1-T曲线服从居里-外斯定律,在低温区(<50K)则表现出顺磁增强现象.  相似文献   

15.
采用近空间升华法在GaAs(100)衬底上外延生长CdZnTe单晶厚膜,用化学腐蚀的方法去除掉GaAs(100)衬底后,对CdZnTe外延膜上、下表面的形貌、成分、结构以及电学性能进行了表征分析。SEM和EDS的结果表明,CdZnTe外延膜表面平滑致密且膜中成分分布较均匀;红外透过成像分析的结果表明,CdZnTe厚膜中无明显的Te夹杂相;X射线摇摆曲线、PL谱的结果表明,随着薄膜厚度的增加,CdZnTe外延膜中的晶体缺陷减少,应变弛豫,结晶质量提高,通过增加膜厚可以获得高质量的CdZnTe外延膜;电学测试表明,CZT外延膜的电阻率在1010Ω·cm数量级,且具有较好的光电响应特性,可用于高能射线探测。  相似文献   

16.
双温区生长CdSe单晶及其红外表征   总被引:2,自引:0,他引:2  
硒化镉晶体是一种很有前途的室温核辐射探测器半导体材料,实验采用改进的双温区气相垂直提拉法成功的生长了Φ15mm×40mm,电阻率为107~108(Ω·cm)量级的硒化镉单晶体.对生长的硒化镉单晶体(110)解理晶片进行XRD、红外透过测试,结果显示:硒化镉单晶体完整性好,红外透过率>62%,表明用二步提纯,在具有较好温度梯度的双温区炉中生长晶体,能有效地控制杂质、缺陷浓度和晶体的化学配比.  相似文献   

17.
利用低压垂直布里奇曼法制备了不同In掺杂量的CdZnTe晶体样品, 采用低温光致发光谱(PL)、深能级瞬态谱(DLTS)以及霍尔测试等手段研究了In掺杂CdZnTe晶体中的主要缺陷能级及其可能存在的补偿机制. PL测试结果表明, 在In掺杂样品中, In原子占据了晶体中原有的Cd空位, 形成了能级位于Ec-18meV的替代浅施主缺陷[InCd+], 同时 [InCd+]还与[VCd2-]形成了能级位于Ev+163meV的复合缺陷[(InCd+-VCd2-)-]. DLTS分析表明, 掺In样品中存在导带以下约0.74eV的深能级电子陷阱能级, 这个能级很可能是Te反位[TeCd]施主缺陷造成的. 由此, In掺杂CdZnTe晶体的电学性质是In掺杂施主缺陷、Te反位深能级施主缺陷与本征受主缺陷Cd空位和残余受主杂质缺陷补偿的综合结果.  相似文献   

18.
以铝掺杂质量分数为1%、2%、3%的Zn/Al合金为靶材,采用直流反应磁控溅射技术在玻璃衬底上制备了不同铝含量ZnO:Al(AZO)透明导电薄膜。研究了衬底温度对AZO薄膜电学性能的影响;同时,研究铝掺杂量不同、电阻率相同的AZO薄膜的载流子浓度与迁移率的关系。结果表明:随着Al掺杂量的增加,薄膜最佳性能(透过率90%,电阻率6×10-4Ω·cm左右)时的衬底温度值会降低;电阻率相同的样品,1%铝掺杂的薄膜迁移率和透光率均高于2%铝掺杂薄膜的。  相似文献   

19.
潘松海  周海  曾冬梅 《功能材料》2013,44(6):862-865
选用Cd0.9Zn0.1Te晶体和纯度为99.999%的铝为靶材,结合Al诱导晶化技术,采用磁控溅射法在普通玻璃衬底上制备了CdZnTe薄膜。研究了铝诱导CdZnTe薄膜的结构和形核机理。研究表明,铝诱导的CZT薄膜为闪锌矿结构,且为(111)晶面的取向生长;在薄膜生长过程中,覆盖在CdZnTe表面的铝首先与ZnTe结合,形成了ZnAl2Te4相,并以此为核心,诱导CdZnTe异质形核结晶,重新形成了小晶粒团簇的较致密颗粒状薄膜,提高了薄膜(111)面的优势取向结晶,提高了CdZnTe薄膜的结晶质量。讨论了薄膜的光学性能。  相似文献   

20.
采用原子层沉积技术与改进的Al掺杂模式在石英玻璃基体上低温制备AZO薄膜,利用椭圆偏振仪、原子力显微镜、X射线衍射仪、X射线光电子能谱仪、Hall效应测试仪系统地对样品的生长速率、表面形貌、晶体结构、薄膜成分与电学性能进行了表征和分析。结果表明,采用原子层沉积在150℃下制备AZO薄膜,其为六方纤锌矿结构,Al掺杂对Zn O的(002)有明显的抑制作用,Al在基体中弥散分布,其部分替换Zn O晶格中的Zn,以Al—O的形式存在于晶体中,晶体中存在大量的氧空位,最佳铝锌循环比为1∶19,此条件下AZO薄膜电阻率为4.61×10-4Ω·cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号