首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Membrane materials with excellent selectivity and high permeability are crucial to efficient membrane gas separation. Microporous organic materials have evolved as an alternative candidate for fabricating membranes due to their inherent attributes, such as permanent porosity, high surface area, and good processability. Herein, a unique pore‐chemistry concept for the designed synthesis of microporous organic membranes, with an emphasis on the relationship between pore structures and membrane performances, is introduced. The latest advances in microporous organic materials for potential membrane application in gas separation of H2, CO2, O2, and other industrially relevant gases are summarized. Representative examples of the recent progress in highly selective and permeable membranes are highlighted with some fundamental analyses from pore characteristics, followed by a brief perspective on future research directions.  相似文献   

2.
Significant achievements have been made on the development of next‐generation filtration and separation membranes using graphene materials, as graphene‐based membranes can afford numerous novel mass‐transport properties that are not possible in state‐of‐art commercial membranes, making them promising in areas such as membrane separation, water desalination, proton conductors, energy storage and conversion, etc. The latest developments on understanding mass transport through graphene‐based membranes, including perfect graphene lattice, nanoporous graphene and graphene oxide membranes are reviewed here in relation to their potential applications. A summary and outlook is further provided on the opportunities and challenges in this arising field. The aspects discussed may enable researchers to better understand the mass‐transport mechanism and to optimize the synthesis of graphene‐based membranes toward large‐scale production for a wide range of applications.  相似文献   

3.
Sustainable and cost‐effective energy generation has become crucial for fulfilling present energy requirements. For this purpose, the development of cheap, scalable, efficient, and reliable catalysts is essential. Carbon‐based heteroatom‐doped, 3D, and mesoporous electrodes are very promising as catalysts for electrochemical energy conversion and storage. Various carbon allotropes doped with a variety of heteroatoms can be utilized for cost‐effective mass production of electrode materials. 3D porous carbon electrodes provide multiple advantages, such as large surface area, maximized exposure to active sites, 3D conductive pathways for efficient electron transport, and porous channels to facilitate electrolyte diffusion. However, it is challenging to synthesize and functionalize isotropic 3D carbon structures. Here, various synthesis processes of 3D porous carbon materials are summarized to understand how their physical and chemical properties together with heteroatom doping dictate the electrochemical catalytic performance. Prospects of attractive 3D carbon structural materials for energy conversion and efficient integrated energy systems are also discussed.  相似文献   

4.
Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high‐performance hydrogen storage materials for on‐board applications and electrochemical energy storage materials for lithium‐ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano‐/microcombination, hybridization, pore‐structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.  相似文献   

5.
Mixed ionic–electronic conducting oxygen‐permeable membranes can rapidly separate oxygen from air with 100% selectivity and low energy consumption. Combining reaction and separation in an oxygen‐permeable membrane reactor significantly simplifies the technological scheme and reduces the process energy consumption. Recently, materials design and mechanism investigations have provided insight into the microstructural and interfacial effects. The microstructures of the membrane surfaces and bulk are closely related to the interfacial oxygen exchange kinetics and bulk diffusion kinetics. Therefore, the permeability and stability of oxygen‐permeable membranes with a single‐phase structure and a dual‐phase structure can be adjusted through their microstructural and interfacial designs. Here, recent advances in the development of oxygen permeation models that provide a deep understanding of the microstructural and interfacial effects, and strategies to simultaneously improve the permeability and stability through microstructural and interfacial design are discussed in detail. Then, based on the developed high‐performance membranes, highly effective membrane reactors for process intensification and new technology developments are highlighted. The new membrane reactors will trigger innovations in natural gas conversion, ammonia synthesis, and hydrogen‐related clean energy technologies. Future opportunities and challenges in the development of oxygen‐permeable membranes for oxygen separation and reaction–separation coupling are also explored.  相似文献   

6.
Carbon nanotube (CNT) membranes offer an exciting opportunity to mimic natural protein channels due to (1) a mechanism for dramatically enhanced fluid flow, (2) ability to place ‘gatekeeper’ chemistry at the entrance to pores, and (3) being electrically conductive to localize electric field or perform electrochemical transformations. The transport mechanisms through CNT membranes are primarily (1) ionic diffusion near bulk expectation, (2) gas flow enhanced 1-2 orders of magnitude primarily due to specular reflection, and (3) fluid flow 4-5 orders of magnitude faster than conventional materials due to a nearly ideal slip-boundary interface. Transport can be modulated by ‘gatekeeper’ chemistry at the pore entrance using steric hindrance, electrostatic attraction/repulsion, or biochemical state. Electroosmotic flow is seen to be highly power efficient and can act as a pump through regions of chemical selectivity. The fundamental requirements of mimicking protein channels are present in the CNT membrane system. This membrane structure is mechanically far more robust than lipid bilayer films, allowing for large-scale chemical separations, delivery or sensing based on the principles of protein channels. Applications ranging from water purification, energy generation and bio-separations are highlighted.  相似文献   

7.
The urgent need for ecofriendly, stable, long‐lifetime power sources is driving the booming market for miniaturized and integrated electronics, including wearable and medical implantable devices. Flexible thermoelectric materials and devices are receiving increasing attention, due to their capability to convert heat into electricity directly by conformably attaching them onto heat sources. Polymer‐based flexible thermoelectric materials are particularly fascinating because of their intrinsic flexibility, affordability, and low toxicity. There are other promising alternatives including inorganic‐based flexible thermoelectrics that have high energy‐conversion efficiency, large power output, and stability at relatively high temperature. Herein, the state‐of‐the‐art in the development of flexible thermoelectric materials and devices is summarized, including exploring the fundamentals behind the performance of flexible thermoelectric materials and devices by relating materials chemistry and physics to properties. By taking insights from carrier and phonon transport, the limitations of high‐performance flexible thermoelectric materials and the underlying mechanisms associated with each optimization strategy are highlighted. Finally, the remaining challenges in flexible thermoelectric materials are discussed in conclusion, and suggestions and a framework to guide future development are provided, which may pave the way for a bright future for flexible thermoelectric devices in the energy market.  相似文献   

8.
为了制备一种轻质高效的隔声材料,本研究以丁腈橡胶(NBR)和聚氯乙烯(PVC)共混为主体材料,采用一步模压发泡工艺制备了重质粒子(HMP)/NBR-PVC微孔阻尼复合材料。通过SEM、动态力学分析和声阻抗管测试探究了橡塑比对HMP/NBR-PVC复合材料泡孔结构、阻尼性能和隔声性能等方面的影响,并进一步对其隔声机制进行了分析。研究结果表明:微孔结构的存在增加了声能量在材料内部传播过程中的衰减,提高了HMP/NBR-PVC复合材料的隔声性能。NBR与PVC质量比为50:50的HMP/NBR-PVC微孔阻尼复合材料具有良好的泡孔结构、力学性能和阻尼性能,其隔声指数高达28.1 dB。这种质轻、质软且易加工的橡塑微孔阻尼复合材料对新型隔声材料开发与应用具有一定的指导意义。  相似文献   

9.
聚烯烃中空纤维微孔膜的研究与进展   总被引:5,自引:0,他引:5  
介绍了聚烯烃中空纤维微孔膜的发展历史,对聚烯烃中空纤维微孔膜的拉伸致孔机理及其亲水改性研究进行了重点评述,着重讨论了亲水化改性对膜性能的影响,指出聚烯烃中空纤维微孔膜的应用领域和发展前景 。  相似文献   

10.
以水吸收空气中的氧为例,从膜的微孔性、疏水性、传质效率、膜污染和价格等五个方面对市售国产聚丙烯和聚偏氟乙烯两种微孔中空纤维膜在膜吸收过程中的性能进行了评估,并分析了造成这两种膜性能差异的原因.评价结果表明,聚丙烯微孔膜具有疏水性好、氧传质系数大、抗污染能力强和价格便宜等优良性能,更适宜应用于膜吸收过程.  相似文献   

11.
In the past decade, a huge development in rational design, synthesis, and application of molecular sieve membranes, which typically included zeolites, metal–organic frameworks (MOFs), and graphene oxides, has been witnessed. Owing to high flexibility in both pore apertures and functionality, MOFs in the form of membranes have offered unprecedented opportunities for energy‐efficient gas separations. Reports on the fabrication of well‐intergrown MOF membranes first appeared in 2009. Since then there has been tremendous growth in this area along with an exponential increase of MOF‐membrane‐related publications. In order to compete with other separation and purification technologies, like cryogenic distillation, pressure swing adsorption, and chemical absorption, separation performance (including permeability, selectivity, and long‐term stability) of molecular sieve membranes must be further improved in an attempt to reach an economically attractive region. Therefore, microstructural engineering and architectural design of MOF membranes at mesoscopic and microscopic levels become indispensable. This review summarizes some intriguing research that may potentially contribute to large‐scale applications of MOF membranes in the future.  相似文献   

12.
2D layered nanomaterials have attracted considerable attention for their potential for highly efficient separations, among other applications. Here, a 2D lamellar membrane synthesized using hexagonal boron nitride nanoflakes (h‐BNF) for highly efficient ion separation is reported. The ion‐rejection performance and the water permeance of the membrane as a function of the ionic radius, ion valance, and solution pH are investigated. The nonfunctionalized h‐BNF membranes show excellent ion rejection for small sized salt ions as well as for anionic dyes (>97%) while maintaining a high water permeability, ≈1.0 × 10?3 L m m?2 h?1 bar?1). Experiments show that the ion‐rejection performance of the membrane can be tuned by changing the solution pH. The results also suggest that the rejection is influenced by the ionic size and the electrostatic repulsion between fixed negative charges on the BN surface and the mobile ions, and is consistent with the Donnan equilibrium model. These simple‐to‐fabricate h‐BNF membranes show a unique combination of excellent ion selectivity and high permeability compared to other 2D membranes.  相似文献   

13.
Thin porous membranes with unidirectional oil‐transport capacity offer great opportunities for intelligent manipulation of oil fluids and development of advanced membrane technologies. However, directional oil‐transport membranes and their unique membrane properties have seldom been reported in research literature. Here, it is proven that a dual‐layer nanofibrous membrane comprising a layer of superamphiphobic nanofibers and a layer of superhydrophobic oleophilic nanofibers has an unexpected directional oil‐transport ability, but is highly superhydrophobic to liquid water. This novel fibrous membrane is prepared by a layered electrospinning technique using poly(vinylidene fluoride‐hexafluoropropylene) (PVDF‐HFP), PVDP‐HFP containing well‐dispersed FD‐POSS (fluorinated decyl polyhedral oligomeric silsesquioxanes), and FAS (fluorinated alkyl silane) as materials. The directional oil‐transport is selective only to oil fluids with a surface tension in the range of 23.8–34.0 mN m–1. By using a mixture of diesel and water, it is further proven that this dual‐layer nanofibrous membrane has a higher diesel–water separation ability than the single‐layer nanofiber membranes. This novel nanofibrous membrane and the incredible oil‐transport ability may lead to the development of intelligent membrane materials and advanced oil–water separation technologies for diverse applications in daily life and industry.  相似文献   

14.
Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power resource, has become an important trend in the development of sustainable energy‐production and energy‐consumption systems. In this regard, the electrocatalytic hydrogen evolution reaction (HER) provides an efficient and clean pathway for the mass production of hydrogen fuel and has motivated the design and construction of highly active HER electrocatalysts of an acceptable cost. In particular, graphene‐based electrocatalysts commonly exhibit an enhanced HER performance owing to their distinctive structural merits, including a large surface area, high electrical conductivity, and good chemical stability. Considering the rapidly growing research enthusiasm for this topic over the last several years, herein, a panoramic review of recent advances in graphene‐based electrocatalysts is presented, covering various advanced synthetic strategies, microstructural characterizations, and the applications of such materials in HER electrocatalysis. Lastly, future perspectives on the challenges and opportunities awaiting this emerging field are proposed and discussed.  相似文献   

15.
Robust and cost-effective membrane-based separations are essential to solving many global crises, such as the lack of clean water. Even though the current polymer-based membranes are widely used for separations, their performance and precision can be enhanced by using a biomimetic membrane architecture that consists of highly permeable and selective channels embedded in a universal membrane matrix. Researchers have shown that artificial water and ion channels, such as carbon nanotube porins (CNTPs), embedded in lipid membranes can deliver strong separation performance. However, their applications are limited by the relative fragility and low stability of the lipid matrix. In this work, we demonstrate that CNTPs can co-assemble into two dimension (2D) peptoid membrane nanosheets, opening up a way to produce highly programmable synthetic membranes with superior crystallinity and robustness. A combination of molecular dynamics (MD) simulations, Raman spectroscopy, X-ray diffraction (XRD), and atomic force microscopy (AFM) measurements to verify the co-assembly of CNTP and peptoids are used and show that it does not disrupt peptoid monomer packing within the membrane. These results provide a new option for designing affordable artificial membranes and highly robust nanoporous solids.  相似文献   

16.
With over 30% global land coverage, the forest is one of nature's most generous gifts to human beings, providing shelters and materials for all living beings. Apart from being sustainable, renewable, and biodegradable, wood and its derivative materials are also extremely fascinating from a materials aspect, with numerous advantages including porous and hierarchical structure, excellent mechanical performance, and versatile chemistry. Here, strategies for designing novel wood‐based materials via advanced nanotechnologies are summarized, including both the controllable bottom‐up assembly from the highly crystalline nanocellulose building block and the more efficient top‐down approaches directly from wood. Beyond material design, recent advances regarding the sustainable applications of these novel wood‐based materials are also presented, focusing on areas that are traditionally dominated by man‐made nonrenewable materials such as plastic, glass, and metals, as well as more advanced applications in the areas of energy storage, wastewater treatment and solar‐steam‐assisted desalination. With all recent progress pertaining to materials' design and sustainable applications presented, a vision for the future engineering of wood‐based materials to promote continuous and healthy progress toward true sustainability is outlined.  相似文献   

17.
Most metal–organic‐framework‐ (MOF‐) based hybrid membranes face the challenge of low gas permeability in CO2 separation. This study presents a new strategy of interweaving UiO‐66 and PIM‐1 to build freeways in UiO‐66‐CN@sPIM‐1 membranes for fast CO2 transport. In this strategy, sPIM‐1 is rigidified via thermal treatment to make polymer voids permanent, and concurrently polymer chains are mutually linked onto UiO‐66‐CN crystals to minimize interfacial defects. The pore chemistry of UiO‐66‐CN is kept intact in hybrid membranes, allowing full utilization of MOF pores and selective adsorption for CO2. Separation results show that UiO‐66‐CN@sPIM‐1 membranes possess exceptionally high CO2 permeability (15433.4–22665 Barrer), approaching to that of UiO‐66‐NH2 crystal (65–75% of crystal‐derived permeability). Additionally, the CO2/N2 permeation selectivity for a representative membrane (23.9–28.6) moves toward that of single crystal (24.6–29.6). The unique structure and superior CO2/N2 separation performance make UiO‐66‐CN@sPIM‐1 membranes promising in practical CO2 separations.  相似文献   

18.
李刚  何敏  张道海  罗大军  秦舒浩 《材料导报》2017,31(Z2):205-209
聚丙烯微孔膜因其比表面积大、性能优异、价格合理等优点而被广泛应用;但其亲水性差、易被污染,因此需要进行亲水改性。根据是否发生化学变化将亲水改性方法归纳为:物理法、化学法和物理化学法;改性之后膜的亲水性得到了改善。分类论述了各种亲水改性方法对聚丙烯微孔膜力学性能的影响及其对膜亲水性能的改善程度同时对亲水改性方法的改进进行了展望。  相似文献   

19.
PDMS/PEI复合膜对FCC汽油的脱硫性能(Ⅲ)Ag_2O载体促进传递   总被引:3,自引:2,他引:1  
以聚醚酰亚胺(PEI)超滤膜为支撑层,聚二甲基硅氧烷(PDMS)为复合层,制备PDMS/1)EI渗透汽化催化裂化(FCC)汽油脱硫复合膜.实验选择Ag2O作为促进添加剂,利用可逆化学作用强化物质在膜内的传递过程,使膜分离兼具高通量和高选择性的特点,突破Robeson上限的限制,解决通量和选择性两者的矛盾.通过傅立叶红外光谱仪(FTIR-ATR)对PDMS/PEI复合膜表面进行结构分析,对比Ag2O填充前后官能团的变化.通过扫描电子显微镜(SEM)分析复合膜表面的形态.考察了添加剂的填充比例及料液温度等对渗透汽化脱硫性能的影响,讨论了固定载体促进传递的机理.  相似文献   

20.
Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF‐based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF‐based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF‐based electrocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号