首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 343 毫秒
1.
针对文本生成图像任务中生成图像细节缺失及低分辨率阶段生成图像存在结构性错误的问题,基于动态注意力机制生成对抗网络(DMGAN),引入内容感知上采样模块和通道注意力卷积模块,提出一种新的文本生成图像方法ECAGAN。在低分辨率图像生成阶段的特征图上采样过程中采用基于内容感知的上采样方法,通过输入特征图计算得到重组卷积核,使用重组卷积核和特征图进行卷积操作,确保上采样后的特征图和文本条件的语义一致性,使生成的低分辨率图像更加准确,利用通道注意力卷积模块学习特征图各个特征通道的重要程度,突出重要的特征通道,抑制无效信息,使生成图像的细节更丰富。此外在训练过程中结合条件增强和感知损失函数辅助训练,增强训练过程的鲁棒性,提高生成图像质量。在CUB-200-2011数据集上的实验结果表明,ECAGAN模型初始分数达到了4.83,R值达到了75.62,与DMGAN方法相比,分别提高了1.6%和4.6%,并且可改善生成图像结构错乱的问题,同时能够生成清晰的图像细节,语义一致性更高,更加接近真实图像。  相似文献   

2.
图像超分辨率重建旨在依据低分辨率图像重建出接近真实的高分辨率图像,现有基于卷积神经网络的图像超分辨率重建方法存在网络参数量大、重建速度慢等问题,从而限制其在内存资源小的终端设备上的应用。提出一种基于深度可分离卷积的轻量级图像超分辨率重建网络,利用深度可分离卷积提取图像的特征信息,减少网络的参数量,采用对比度感知通道注意力机制获取图像的对比度信息,并将其作为全局信息,同时对提取特征的不同通道权重进行重新分配,增强重建图像的细节纹理信息。在此基础上,采用亚像素卷积对图像特征进行上采样操作,提高整体重建图像质量。实验结果表明,当放大倍数为2、3和4时,该网络的参数量分别为140 000、147 000和152 000,重建时间为0.020 s、0.014 s和0.011 s,相比VDSR、RFDN、IDN等网络,在保证重建效果的前提下能够有效减少网络参数量。  相似文献   

3.
针对单图像低分辨率到高分辨率映射具有不适定性、特征图空间信息利用率低下以及网络参数量过大的问题,提出了一种基于渐进上采样的对偶学习算法用于图像的超分辨率重建.首先采用深度可分离卷积使得模型参数量显著减少;再基于亚像素卷积构建渐进上采样网络来高效利用特征图上下文信息;最后利用对偶学习策略构建闭环反馈网络,通过对偶关系相互约束映射空间以获取最佳重建函数.在Set5、Set14、BSDS100、Urban100、Manga109基准数据集上与其他主流的超分辨率方法相比,该算法表现出更优越的性能:有效减少了网络9%的参数量,在×4、×8放大因子下能重建出更清晰的图像,同时能有效缓解图像边缘失真和伪影现象,并且×8放大时的平均峰值信噪比和结构相似度(PSNR/SSIM)分别为26.90/0.751、24.84/0.645、24.74/0.619、22.30/0.560、24.38/0.706.  相似文献   

4.
图像超分辨率重建在安防系统,小目标检测以及医学图像等有着广泛的应用.本文提出一种双路径反馈网络来提高图像超分辨重建的性能.在双路径网络中,一条路径采用深度残差稠密网络学习重建图像的高频信息,另一条路径直接在输入图像上通过亚像素卷积层上采样到所需分辨率来给重建图像提供低频信息,然后将两条路径得到的特征图进行融合来自适应的选取所需要的信息,接着通过一个反馈型卷积层进行局部循环训练来获得大的感受野.通过在数据集DIV2K上训练,实验结果表明所提方法的有效性和优越性.  相似文献   

5.
针对现有模型修复带有随机不规则掩码且语义内容复杂的图片时细节不够真实这一问题,提出了一种基于门控卷积和SENet的双判别生成对抗网络图像修复模型。首先,将破损图片掩码输入由若干门控卷积堆叠成的粗网络中,在上采样时添加通道注意力(SE),结合L1重建损失,得到初步修复图;然后,将初步修复图输入精细网络,精细网络由若干门控卷积块和通道注意力块构成,结合重构损失、感知损失和对抗损失完善重要特征和细节,将破损图像的完好区域覆盖到精细网络的修复图上,得到完成修复的图片;最后,使用双判别网络结构进行训练,使精细网络的输出与完成修复的图片更加真实。在celebA数据集上进行实验,所提模型对带有大面积不规则掩码图片的修复结果在峰值信噪比(PSNR)上达到了27.39 dB,相较于部分卷积提升了6.74%,在结构相似性(SSIM)上达到了0.921 6,较部分卷积提升了2.95%。实验结果表明,引入通道注意力和双判别结构有助于提升图像修复的细节。  相似文献   

6.
随着深度学习方法的不断发展,基于深度卷积网络特征的语义分割已经成为自动驾驶、室内导航、遥感制图等领域视觉感知应用的一项重要技术.然而对于多样性变化背景中的目标图像,现有基于局部上下文卷积特征的语义分割方法仍然存在分类精度低的问题.为此,提出了基于可变向卷积网络的语义分割算法.首先,在特征图每一个像素点上预测对象主要观测...  相似文献   

7.
目的 针对以往基于深度学习的图像超分辨率重建方法单纯加深网络、上采样信息损失和高频信息重建困难等问题,提出一种基于多尺度特征复用混合注意力网络模型用于图像的超分辨率重建。方法 网络主要由预处理模块、多尺度特征复用混合注意力模块、上采样模块、补偿重建模块和重建模块5部分组成。第1部分是预处理模块,该模块使用一个卷积层来提取浅层特征和扩张特征图的通道数。第2部分是多尺度特征复用混合注意力模块,该模块加入了多路网路、混合注意力机制和长短跳连接,以此来进一步扩大特征图的感受野、提高多尺度特征的复用和加强高频信息的重建。第3部分是上采样模块,该模块使用亚像素方法将特征图上采样到目标图像尺寸。第4部分是补偿重建模块,该模块由卷积层和混合注意力机制组成,用来对经过上采样的特征图进行特征补偿和稳定模型训练。第5部分是重建模块,该模块由一个卷积层组成,用来将特征图的通道数恢复至原来数量,以此得到重建后的高分辨率图像。结果 在同等规模模型的比较中,以峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structural similarity index measure,SSIM)作为评价指标来评价算法性能,在Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100的基准测试集上进行测试。当缩放尺度因子为3时,各测试集上的PSNR/SSIM依次为34.40 dB/0.927 3,30.35 dB/0.842 7,29.11 dB/0.805 2和28.23 dB/0.854 0,相比其他模型有一定提升。结论 量化和视觉的实验结果表明,本文模型重建得到的高分辨率图像不仅在重建边缘和纹理信息有很好的改善,而且在PSNR和SSIM客观评价指标上也有一定的提高。  相似文献   

8.
图像修复是一项利用图像已知区域的信息来修复图像中缺失或损坏区域的技术。人们借助以此为基础的图像编辑软件无须任何专业基础就可以轻松地编辑和修改数字图像内容,一旦图像修复技术被用于恶意移除图像的内容,会给真实的图像带来信任危机。目前图像修复取证的研究只能有效地检测某一种类型的图像修复。针对这一问题,提出了一种基于双分支网络的图像修复被动取证方法。双分支中的高通滤波卷积网络先使用一组高通滤波器来削弱图像中的低频分量,然后使用4个残差块提取特征,再进行两次4倍上采样的转置卷积对特征图进行放大,此后使用一个 5×5 的卷积来减弱转置卷积带来的棋盘伪影,生成图像高频分量上的鉴别特征图。双分支中的双注意力特征融合分支先使用预处理模块为图像增添局部二值模式特征图。然后使用双注意力卷积块自适应地集成图像局部特征和全局依赖,捕获图像修复区域和原始区域在内容及纹理上的差异,再对双注意力卷积块提取的特征进行融合。最后对特征图进行相同的上采样,生成图像内容和纹理上的鉴别特征图。实验结果表明该方法在检测移除对象的修复区域上,针对样本块修复方法上检测的F1分数较排名第二的方法提高了2.05%,交并比上提高了3.53%;针对深度学习修复方法上检测的F1分数较排名第二的方法提高了1.06%,交并比提高了1.22%。对结果进行可视化可以看出,在检测修复区域上能够准确地定位移除对象的边缘。  相似文献   

9.
目的 深层卷积神经网络在单幅图像超分辨率任务中取得了巨大成功。从3个卷积层的超分辨率重建卷积神经网络(super-resolution convolutional neural network,SRCNN)到超过300层的残差注意力网络(residual channel attention network,RCAN),网络的深度和整体性能有了显著提高。然而,尽管深层网络方法提高了重建图像的质量,但因计算量大、实时性差等问题并不适合真实场景。针对该问题,本文提出轻量级的层次特征融合空间注意力网络来快速重建图像的高频细节。方法 网络由浅层特征提取层、分层特征融合层、上采样层和重建层组成。浅层特征提取层使用1个卷积层提取浅层特征,并对特征通道进行扩充;分层特征融合层由局部特征融合和全局特征融合组成,整个网络包含9个残差注意力块(residual attention block,RAB),每3个构成一个残差注意力组,分别在组内和组间进行局部特征融合和全局特征融合。在每个残差注意力块内部,首先使用卷积层提取特征,再使用空间注意力模块对特征图的不同空间位置分配不同的权重,提高高频区域特征的注意力,以快速恢复高频细节信息;上采样层使用亚像素卷积对特征图进行上采样,将特征图放大到目标图像的尺寸;重建层使用1个卷积层进行重建,得到重建后的高分辨率图像。结果 在Set5、Set14、BSD(Berkeley segmentation dataset)100、Urban100和Manga109测试数据集上进行测试。当放大因子为4时,峰值信噪比分别为31.98 dB、28.40 dB、27.45 dB、25.77 dB和29.37 dB。本文算法比其他同等规模的网络在测试结果上有明显提升。结论 本文提出的多层特征融合注意力网络,通过结合空间注意力模块和分层特征融合结构的优势,可以快速恢复图像的高频细节并且具有较小的计算复杂度。  相似文献   

10.
针对经典的基于卷积神经网络的单幅图像超分辨率重建方法网络较浅、提取的特征少、重建图像模糊等问题,提出了一种改进的卷积神经网络的单幅图像超分辨率重建方法,设计了由密集残差网络和反卷积网络组成的新型深度卷积神经网络结构。原始低分辨率图像输入网络,利用密集残差学习网络获取更丰富的有效特征并加快特征梯度流动,其次通过反卷积层将图像特征上采样到目标图像大小,再利用密集残差学习高维特征,最后融合不同卷积核提取的特征得到最终的重建图像。在Set5和Set14数据集上进行了实验,并和Bicubic、K-SVD、SelfEx、SRCNN等经典重建方法进行了对比,重建出的图像在整体清晰度和边缘锐度方面更好,另外峰值信噪比(PSNR)平均分别提高了2.69?dB、1.68?dB、0.74?dB和0.61?dB。实验结果表明,该方法能够获取更丰富的细节信息,得到更好的视觉效果,达到了图像超分辨率的增强任务。  相似文献   

11.
计算机断层扫描(CT)三维重建技术通过上采样体数据来提高三维模型质量,减轻模型中的锯齿状边缘、条纹状伪影和不连续表面等现象,从而提高临床医学中疾病诊断的准确率.针对以往CT三维重建后模型仍然不够清晰的问题,提出一种基于超分辨率网络的CT三维重建算法.网络模型为具有双重损失的优化学习纵轴超分辨率重建网络(DLRNet),...  相似文献   

12.
目的 单幅图像超分辨率重建的深度学习算法中,大多数网络都采用了单一尺度的卷积核来提取特征(如3×3的卷积核),往往忽略了不同卷积核尺寸带来的不同大小感受域的问题,而不同大小的感受域会使网络注意到不同程度的特征,因此只采用单一尺度的卷积核会使网络忽略了不同特征图之间的宏观联系。针对上述问题,本文提出了多层次感知残差卷积网络(multi-level perception residual convolutional network,MLP-Net,用于单幅图像超分辨率重建)。方法 通过特征提取模块提取图像低频特征作为输入。输入部分由密集连接的多个多层次感知模块组成,其中多层次感知模块分为浅层多层次特征提取和深层多层次特征提取,以确保网络既能注意到图像的低级特征,又能注意到高级特征,同时也能保证特征之间的宏观联系。结果 实验结果采用客观评价的峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)两个指标,将本文算法其他超分辨率算法进行了对比。最终结果表明本文算法在4个基准测试集上(Set5、Set14、Urban100和BSD100(Berkeley Segmentation Dataset))放大2倍的平均峰值信噪比分别为37.851 1 dB,33.933 8 dB,32.219 1 dB,32.148 9 dB,均高于其他几种算法的结果。结论 本文提出的卷积网络采用多尺度卷积充分提取分层特征中的不同层次特征,同时利用低分辨率图像本身的结构信息完成重建,并取得不错的重建效果。  相似文献   

13.
林静  黄玉清  李磊民 《计算机应用》2020,40(8):2345-2350
由于网络训练不稳定,基于生成对抗网络(GAN)的图像超分辨率重建存在模式崩溃的现象。针对此问题,提出了一种基于球形几何矩匹配与特征判别的球面双判别器超分辨率重建网络SDSRGAN,通过引入几何矩匹配与高频特征判别来改善网络训练的稳定性。首先,生成器对图像提取特征并通过上采样生成重建图像;接着,球面判别器将图像特征映射至高维球面空间,充分利用特征数据的高阶统计信息;然后,在传统判别器的基础上增加特征判别器,提取图像高频特征,重建特征高频分量和结构分量两方面;最后,对生成器与双判别器进行博弈训练,提高生成器重建图像质量。实验结果表明,所提算法能有效收敛,其网络能够稳定训练,峰值信噪比(PSNR)为31.28 dB,结构相似性(SSIM)为0.872,而与双三次差值、超分辨率残差网络(SRResNet)、加速的卷积神经网络超分辨率(FSRCNN)、基于GAN的单图像超分辨率(SRGAN)和增强型超分辨率生成对抗网络(ESRGAN)算法相比,所提算法的重建图像具有更加逼真的结构纹理细节。所提算法为基于GAN的图像超分辨率研究提供了球形矩匹配与特征判别的双判别方法,在实际应用中可行且有效。  相似文献   

14.
目的 近几年应用在单幅图像超分辨率重建上的深度学习算法都是使用单种尺度的卷积核提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏。另外,为了获得更好的图像超分辨率重建效果,网络模型也不断被加深,伴随而来的梯度消失问题会使得训练时间延长,难度加大。针对当前存在的超分辨率重建中的问题,本文结合GoogleNet思想、残差网络思想和密集型卷积网络思想,提出一种多尺度密集残差网络模型。方法 本文使用3种不同尺度卷积核对输入的低分辨率图像进行卷积处理,采集不同卷积核下的底层特征,这样可以较多地提取低分辨率图像中的细节信息,有利于图像恢复。再将采集的特征信息输入残差块中,每个残差块都包含了多个由卷积层和激活层构成的特征提取单元。另外,每个特征提取单元的输出都会通过短路径连接到下一个特征提取单元。短路径连接可以有效地缓解梯度消失现象,加强特征传播,促进特征再利用。接下来,融合3种卷积核提取的特征信息,经过降维处理后与3×3像素的卷积核提取的特征信息相加形成全局残差学习。最后经过重建层,得到清晰的高分辨率图像。整个训练过程中,一幅输入的低分辨率图像对应着一幅高分辨率图像标签,这种端到端的学习方法使得训练更加迅速。结果 本文使用两个客观评价标准PSNR(peak signal-to-noise ratio)和SSIM(structural similarity index)对实验的效果图进行测试,并与其他主流的方法进行对比。最终的结果显示,本文算法在Set5等多个测试数据集中的表现相比于插值法和SRCNN算法,在放大3倍时效果提升约3.4 dB和1.1 dB,在放大4倍时提升约3.5 dB和1.4 dB。结论 实验数据以及效果图证明本文算法能够较好地恢复低分辨率图像的边缘和纹理信息。  相似文献   

15.
目的 多视角立体重建方法是3维视觉技术中的重要部分。相较于传统方法,基于深度学习的方法大幅减少重建所需时间,同时在重建完整性上也有所提升。然而,现有方法的特征提取效果一般和代价体之间的关联性较差,使得重建结果仍有可以提升的空间。针对以上问题,本文提出了一种双U-Net特征提取的多尺度代价体信息共享的多视角立体重建网络模型。方法 为了获得输入图像更加完整和准确的特征信息,设计了一个双U-Net特征提取模块,同时按照3个不同尺度构成由粗到细的级联结构输出特征;在代价体正则化阶段,设计了一个多尺度代价体信息共享的预处理模块,对小尺度代价体内的信息进行分离并传给下层代价体进行融合,由粗到细地进行深度图估计,使重建精度和完整度有大幅提升。结果 实验在DTU (Technical University of Denmark)数据集上与CasMVSNet相比,在准确度误差、完整度误差和整体性误差3个主要指标上分别提升约16.2%,6.5%和11.5%,相较于其他基于深度学习的方法更是有大幅度提升,并且在其他几个次要指标上也均有不同程度的提升。结论 提出的双U-Net提取多尺度代价体信息共享的多视角立体重建网络在特征提取和代价体正则化阶段均取得了效果,在重建精度上相比于原模型和其他方法都有一定的提升,验证了该方法的真实有效。  相似文献   

16.
目的 雨天户外采集的图像常常因为雨线覆盖图像信息产生色变和模糊现象。为了提高雨天图像的质量,本文提出一种基于自适应选择卷积网络深度学习的单幅图像去雨算法。方法 针对雨图中背景误判和雨痕残留问题,加入网络训练的雨线修正系数(refine factor,RF),改进现有雨图模型,更精确地描述雨图中各像素受到雨线的影响。构建选择卷积网络(selective kernel network,SK Net),自适应地选择不同卷积核对应维度的信息,进一步学习、融合不同卷积核的信息,提高网络的表达力,最后构建包含SK Net、refine factor net和residual net子网络的自适应卷积残差修正网络(selective kernel convolution using a residual refine factor,SKRF),直接学习雨线图和残差修正系数(RF),减少映射区间,减少背景误判。结果 实验通过设计的SKRF网络,在公开的Rain12测试集上进行去雨实验,取得了比现有方法更高的精确度,峰值信噪比(peak signal to noise ratio,PSNR)达到34.62 dB,结构相似性(structural similarity,SSIM)达到0.970 6。表明SKRF网络对单幅图像去雨效果有明显优势。结论 单幅图像去雨SKRF算法为雨图模型中的雨线图提供一个额外的修正残差系数,以降低学习映射区间,自适应选择卷积网络模型提升雨图模型的表达力和兼容性。  相似文献   

17.
视觉感知是无人驾驶技术中的重要一环,而语义分割技术又是实现视觉感知的主要技术手段之一.现在的语义分割技术多采用计算量大、内存占用高的空洞卷积来提取高分辨率特征图,从而导致现在主流的语义分割网络分割速度不足,无法有效应用于无人驾驶的场景中.针对这一问题,提出了一种实时性更好的语义分割网络.首先,采用了一种轻量级的卷积神经...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号