首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 930 毫秒
1.
王秀林  陈杰  浦晖  曾伟平 《广东化工》2011,38(6):50-51,60
利用水合物法实现对天然气的工业储运,需要提高水合物的储气量并解决水合物的分解速度问题。为此,文章研究了在十二烷基硫酸钠(SDS)体系中,甲烷水合物的储气量和在冰点以下的常压分解规律。研究发现,SDS浓度为650 mg/L时甲烷水合物储气量达到最高值,约为170 V/V。分解温度为268.2~272.2 K区域内,甲烷水合物的分解速率随温度的降低而降低;在268.2 K时,甲烷水合物分解速率最低。  相似文献   

2.
裴俊华  杨亮  汪鑫  胡晗  刘道平 《化工学报》2021,72(11):5751-5760
提高水合物生成速率和储气密度对天然气水合物技术应用非常重要。将三种孔密度的泡沫铜(CF)分别浸入十二烷基硫酸钠(SDS)溶液中构建水合储气强化体系,在高压静态反应釜中研究泡沫金属对甲烷水合物生成动力学特性。实验结果表明,泡沫铜骨架能为水合物生成提供充足的结晶点,同时可作为水合物生长过程水合热迁移的“高速公路”。甲烷水合物在SDS/CF体系中可快速生成,最大水合储气速率分布在19.24~21.04 mmol·mol-1·min-1之间,其中添加15 PPI泡沫铜的SDS溶液储气量最高(139 mmol·mol-1),且达到最大储气量90%所用时间最短(10.1 min)。在6.0~8.0 MPa压力下,相比SDS溶液,添加15 PPI泡沫铜的SDS溶液储气量提高了8.8%~35.6%,储气速率提高了4.7%~40.4%;特别在压力为5.0 MPa时,该孔密度SDS/CF体系储气量甚至比SDS溶液增加13倍,储气速率增加16倍。  相似文献   

3.
为研究介观尺度下甲烷水合物的生成速率及储气量等特性,选用介孔分子筛SBA-15为多孔介质,并添加热力学促进剂THF、TBAB和表面活性剂SDS以提高水合反应速率。水合物生成实验在定容恒温条件下进行,压力选取2. 0 MPa和1. 8MPa,温度选取282. 15 K和279. 15 K。实验结果表明,在添加剂的共同作用下,介观尺度下水合物合成速率得到显著提高;反应过程中温度波动较小,最大为0. 6 K,表明其具有良好的传热性;在水合物储气量方面,实验中最大储气量达到45. 826 mmol(10 m L水),降温、增压能够提高水合物储气量;同时高压和低温能够有效地提高介观尺度下水合反应速率,最高生成速率达到2. 335 mmol/min;在促进水合物生成、提高水合物储气能力、加快水合物反应速率方面THF均优于TBAB。  相似文献   

4.
《应用化工》2022,(7):1795-1800
气液比作为影响天然气水合物快速、大量生成的关键因素,有必要对其深入研究。利用天然气水合物装置,设定初始压力为6 MPa,温度为275.15 K,研究了十二烷基硫酸钠(SDS)与烷基多糖苷(APG1214)复配溶液体系在不同气液比条件下对天然气水合物生成影响。结果表明,合理的选取气液比能增强水合物的储气能力以及生成速率,4.00为其最佳气液比,最终储气密度可达到110.2(V/V),实验初始气液比的大小会影响水合物的生成过程,增加气液比能增加水合物的生成速率。因此,合理地将表面活性剂复配以及选取气液比,可显著提高水合物生成速率与储气能力。  相似文献   

5.
水合物法储存乙烯实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
吴志恺  陈光进  林微 《化工学报》2003,54(Z1):18-22
提出了以水合物法储运乙烯,选用阴离子表面活性剂十二烷基硫酸钠(SDS)作为乙烯水合物的生成促进剂进行实验研究,考察了SDS对乙烯水合物生成的促进作用以及乙烯水合物在低温下的热稳定性。结果表明:SDS对乙烯水合物的生成速率和储气密度都有较大提高,对其促进原因进行了初步分析;实验测定乙烯水合物在263~269K的分解平衡压力范围是0.244~0.460MPa,在263~271K进行常压分解时,其分解率随温度升高而升高,在温度低于267K时,乙烯水合物的平衡分解率将降到23.7%以下,其中263K的分解率为5.6%。  相似文献   

6.
利用恒压预冷法研究了不同反应物量(30.0,100.0g)、不同压力(2.50,3.50,4.50 MPa)、温度为6℃时无搅拌甲烷-叔丁胺-水体系中水合物的生成过程.实验结果表明,水合物在此体系中的生成形态为浆状;CH4水合反应速率随压力升高而增大;当初始反应物量较少(30.0g)时,甲烷储气量(标准状态下水合物中甲烷与初始反应物的体积比)随压力升高而增大不明显(3.50 MPa时为3.0 mL/mL,4.50 MPa时为3.1 mL/mL),当初始反应物量较多(100.0g)时,甲烷储气量随压力升高反而降低(由2.50 MPa时的5.4 mL/mL变为4.50 MPa时的0.9 mL/mL);反应过程中可能同时生成了纯叔丁胺结构的Ⅵ型和甲烷/叔丁胺结构的Ⅱ型两种水合物,且Ⅵ型与Ⅱ型量比在反应后期比前期大;甲烷与浓度为9.3%(mol)的叔丁胺溶液生成的水合物中甲烷储气量较低(最高5.4 mL/mL).通过分析甲烷-叔丁胺-水体系中水合物的生成过程,认为其可能包括反应分子接触聚集、水合物骨架形成和水合物晶体增长等3个步骤.  相似文献   

7.
胡晗  杨亮  李春晓  刘道平 《化工学报》2023,(3):1313-1321
水合物法储存天然气被公认为是一种极具潜力的高效储气技术。如何加速水合物生成,又能保证水合促进材料绿色环保,是水合固气技术实用化的关键。本文利用天然烟丝和烟末浸泡滤液在8.0 MPa和274.2 K的实验条件下进行静态水合储甲烷实验,研究甲烷水合物在烟滤液中的生成动力学特性。实验结果表明,水-烟质量比(液固比)为5~100的滤液与表面活性剂溶液性质相似,其表面张力比纯水下降36.7%~47.5%,甲烷水合物在该天然活性溶液中能快速生成。烟丝滤液中活性物含量明显低于烟末滤液,低液固比时,烟丝溶液有更高的水合储气量和储气速率;高液固比时,烟末滤液则表现出更优的水合储气性能,尤其在液固比为50时,烟末滤液中水合物储气量高达118.5 mmol·mol-1,储气速率达2.98 mmol·mol-1·min-1。  相似文献   

8.
《化学工程》2021,49(8)
1 m~3甲烷水合物分解后释放0.8 m~3的水和172 m~3的甲烷,燃烧时产生的高热量和低污染使其是理想的烃类能源。但是,其储气量少、诱导时间长等问题,使水合物技术难以在工业上大范围使用。文中使用4 mm氧化铝颗粒,并将其与十二烷基硫酸钠(SDS)溶液混合。研究在275.15 K和7 MPa的条件下,通过改变酸碱度来观察水合物的生成情况,并以双电层理论为基础进行分析。研究表明:在此复配环境下,存在着最佳的酸碱度促进甲烷水合物的生成。在pH=4的情况下,水合物的储气密度和气体消耗量达到最大,储气密度为301.4 mol/mol,气体消耗量为0.538 mol。且无论酸碱度如何都不改变水合物的生成位置。同时酸碱度的改变,减少了水合物生成过程中的诱导时间。  相似文献   

9.
王燕鸿  姚凯  郎雪梅  樊栓狮 《化工学报》2021,72(9):4872-4880
油包水乳液是近年来新兴的一种水合强化材料,具有良好的水合储气潜力,但是为了保证乳液的稳定性,通常所用的油包水乳液含水量不超过50%。然而水合物的储气量与水含量密切相关,因此高含水的油包水乳液更具有应用前景。对含水量超过50%的油包水乳液进行了水合物的储甲烷研究,考察了乳化剂用量、初始压力及搅拌速率对储气性能的影响,最后考察了乳液的循环储气能力。结果表明:含水量超过55%后,含水量的增加会造成乳液液滴的增大,储气量的降低。乳液含水量为55%,复合乳化剂Span80 / Tween80(mTween80mSpan80=0.783∶1)用量5%(质量)(以水量为基准)的乳液最适合水合储气;初始压力的增加有利于水合储气性能的提高,但压力过高会造成水合物壳的快速形成,从而降低整体储气能力;适宜的搅拌速率有利于水合物的生成,过快或过慢都会引起水合速率的下降。本实验中最佳的乳液水合储气条件为:温度274.15 K、反应釜中气水体积比10∶1、甲烷初始压力6 MPa、搅拌速率700 r/min,在此条件下,储气量可达141.42 L 气/L 水。在此条件下进行循环储气实验证明该乳液具有良好的循环利用性,四次循环中储气量均在130 L 气/L 水以上。研究结果可为天然气储运以及含烃混合气分离提供技术参考。  相似文献   

10.
表面活性剂吸附对促进甲烷水合物生成效果的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
基于表面活性剂固-液界面吸附理论,在无搅拌条件下研究了十二烷基硫酸钠(SDS(、脂肪醇聚乙烯醚硫酸钠(AES(、脂肪醇聚乙烯醚(AEO(3种表面活性剂在不锈钢反应釜中对甲烷水合物生成的促进效果。结果表明:水合物的生成形态与表面活性剂吸附金属表面形态有良好的对应关系;SDS与AES在金属表面的吸附作用可使水合物成核速率提高,成核位置增多。由于AEO不能在金属壁面发生吸附,导致对水合物生成促进效果降低,在浓度为300 mg·L-1的SDS、AES和AEO溶液中,水合物储气密度及平均储气速率分别为131.4、128.3、12.3(体积比(和5.8、7.6、0.07 mmol·min-1;逐步提高SDS溶液浓度(80~1200 mg·L-1(和AES溶液浓度(60~1350 mg·L-1(,水合物储气密度首先增大然后减小,储气速率线性增大。因此,合理选择表面活性剂种类及浓度,可显著促进水合物生成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号