首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
为满足高速飞行器大面积热防护(≥1500℃)需求,以耐高温氧化铝纤维增强气凝胶复合材料作为隔热层,碳纤维织物为面板层预制体,通过法向针刺穿刺工艺以及先驱体浸渍裂解工艺,制备防隔热一体化TPS材料,并开展耐高温性能测试研究,为材料的工程化应用提供理论与技术支持。结果表明:采用针刺穿刺缝合技术与PIP工艺可以制备防隔热一体化TPS材料,整体性较好,无明显的缺陷,密度仅为0.6 g/cm3。C/SiC复合材料在高温氧化环境中使用,氧化性气氛通过孔隙与裂纹等缺陷扩散进入材料内部,与碳纤维发生氧化反应,导致复合材料性能的下降。材料具有优异的耐高温性能,材料的质量烧蚀率为0.051 g/s,线烧蚀率为0.077 mm/s;未出现显著的间隙结构,整体无明显收缩,呈现出较好的耐高温性能。  相似文献   

2.
为满足高速飞行器大面积热防护(≥1500℃)需求,以耐高温氧化铝纤维增强气凝胶复合材料作为隔热层,碳纤维织物为面板层预制体,通过法向针刺穿刺工艺以及先驱体浸渍裂解工艺,制备防隔热一体化TPS材料,并开展耐高温性能测试研究,为材料的工程化应用提供理论与技术支持。结果表明:采用针刺穿刺缝合技术与PIP工艺可以制备防隔热一体化TPS材料,整体性较好,无明显的缺陷,密度仅为0.6 g/cm^(3)。C/SiC复合材料在高温氧化环境中使用,氧化性气氛通过孔隙与裂纹等缺陷扩散进入材料内部,与碳纤维发生氧化反应,导致复合材料性能的下降。材料具有优异的耐高温性能,材料的质量烧蚀率为0.051 g/s,线烧蚀率为0.077 mm/s;未出现显著的间隙结构,整体无明显收缩,呈现出较好的耐高温性能。  相似文献   

3.
以环氧改性有机硅树脂为基料,配以金属氧化物和硅酸盐类填料,制备了可用于碳纤维复合材料的耐高温抗烧蚀涂层。该热防护涂层导热系数为0.235W/(m·℃),氧-乙炔线烧蚀率为0.278mm/s,质量烧蚀率为0.0758g/s,附着力良好,且具有优良的隔热性能。  相似文献   

4.
将SiC纤维毡与C纤维毡交替层叠, 通过针刺工艺制备(C-SiC)f/C预制体, 采用化学气相渗透与前驱体浸渍裂解复合工艺(CVI+PIP)制备(C-SiC)f/C复合材料, 研究(C-SiC)f/C复合材料H2-O2焰烧蚀性能。利用SEM、EDS和XRD对烧蚀前后材料的微观结构和物相组成进行分析, 探讨材料抗烧蚀机理。结果表明: (C-SiC)f/C复合材料表现出更优异的耐烧蚀性能。烧蚀750 s后, (C-SiC)f/C复合材料的线烧蚀率为1.88 μm/s, 质量烧蚀率为2.16 mg/s。与C/C复合材料相比, 其线烧蚀率降低了64.5%, 质量烧蚀率降低了73.5%; SiC纤维毡在烧蚀中心区表面形成的网络状保护膜可以有效抵御高温热流对材料的破坏; 在烧蚀过渡区和烧蚀边缘区形成的熔融SiO2能够弥合材料的裂纹、孔洞等缺陷, 阻挡氧化性气氛进入材料内部, 使材料表现出优异的抗烧蚀性能。  相似文献   

5.
制备了一种新型的防热隔热一体化材料碳高硅氧纤维增强C-SiC复合材料,沿厚度方向从抗烧蚀层渐次过渡到隔热层,其组成依次是致密C/C—SiC,致密C/C,多孔C/C,通过界面处过渡到变密度多孔HSF/C.这种材料既具有抗烧蚀性能又具有隔热性能.C/CSiC复合材料的烧蚀表面平滑,线烧蚀率只有0.028mm/s.烧蚀性能的提高得益于SiC颗粒原位氧化生成SiO2黏附在碳材料表面,对氧气有一定的阻挡遮蔽作用。密度为0.80g/cm^3的HSF/C材料,热导率为0.59W/mK.在碳纤维与高硅氧织物的界面处,针刺纤维与热解碳的结合良好,密度为1.69g/cm^3的C—HSF/C复合材料界面处的剪切强度达到16.7MPa.  相似文献   

6.
通过化学气相渗透法和先驱体浸渍裂解法相结合制备出密度为1.95 g/cm~3的三维C/C-HfC复合材料,碳化铪陶瓷相均匀地填充于材料内部。探究了先驱体的物相转化过程和材料的耐烧蚀性能。结果表明:复合材料经等离子体烧蚀装置测试120 s后,样品的质量烧蚀率和线烧蚀率分别为:0.001 5 g/s和0.002 4 mm/s。通过先驱体浸渍裂解工艺引入到基体内的碳化铪陶瓷相在烧蚀过程中与氧化性气体生成的二氧化铪固体颗粒起既能起到一定的热障作用,也能作为抑制氧化性气体扩散的阻挡层,从而提高了材料的耐烧蚀性能。同时,氧化产物的生成和一氧化碳气体的挥发将消耗烧蚀区域内一部分热量,进而降低材料表面的温度,进一步提高材料的抗烧蚀能力。  相似文献   

7.
陶瓷前驱体配比对C/C-ZrC-SiC复合材料烧蚀性能的影响   总被引:3,自引:3,他引:0  
采用聚碳硅烷和有机锆聚合物混合前驱体,通过反复浸渍裂解工艺制备了C/C-ZrC-SiC复合材料,分析了材料的组成与结构,研究了不同陶瓷前驱体配比对材料烧蚀性能的影响。结果表明,复相陶瓷基体由大量ZrC颗粒均匀弥散分布在连续SiC相中组成。随着ZrC含量的增加,C/C-ZrC-SiC复合材料的烧蚀率呈现先减小后增大的趋势。当聚碳硅烷与有机锆聚合物的配比(质量比)为1∶3时,ZrC体积含量约为13.3%,氧乙炔烧蚀600s后,C/C-ZrC-SiC复合材料的线烧蚀率和质量烧蚀率降至最低,分别为-0.0015mm/s和0.0002g/s。研究发现,高温氧化环境中,形成了粘稠的ZrO2-SiO2玻璃态氧化膜,有效降低了氧化性气氛向材料内部扩散的速率,对材料基体形成了较好的保护。  相似文献   

8.
针对新一代航天器长时防隔热-高气动剪切的防热需求,以杂化酚醛树脂为基体、纤维布/纤维网胎逐层针刺结构为增强体,通过溶胶-凝胶工艺,制备出一种中密度-高强度-防隔热一体化的纳米孔树脂基复合材料(IPC-90),系统研究了石英纤维(QF/IPC-90)和碳纤维(CF/IPC-90)对复合材料的微观结构、力学性能、静态隔热和烧蚀性能的影响,探讨了其在低-中-高温度下的烧蚀机制。结果表明:纤维布的引入使IPC-90具有优异的力学性能(拉伸曲强度>120 MPa,弯曲强度>90 MPa);纳米孔基体和纤维网胎的引入使IPC-90在中密度(~0.95 g/cm3)下具有较低的热导率(室温热导率依次为0.089 W/(m·K)和0.120 W/(m·K))。在1 000℃静态隔热试验中,两种材料均展现了较好的热稳定性和抗氧化性,其等效热导率分别为0.142 W/(m·K)和0.186 W/(m·K)。在2 000℃以下氧-丙烷烧蚀试验中,QF/IPC-90和CF/IPC-90的烧蚀主要由基体热解、炭化收缩引起,其1 600℃下的线烧蚀率依次为0.0208 mm/s和...  相似文献   

9.
ZrC改性C/C-SiC复合材料的力学和抗烧蚀性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用碳纤维针刺预制体, 用前驱体浸渍裂解(PIP)法分别制备了C/C-SiC和C/C-SiC-ZrC陶瓷基复合材料, 并对材料的微观结构、力学和烧蚀性能进行了分析对比。结果表明:利用该方法可制备出陶瓷相填充充分且分布均匀的复合材料。C/C-SiC-ZrC的面内弯曲强度、厚度方向的压缩强度、层间剪切强度均低于对应的C/C-SiC的。2 200 ℃、600 s氧化烧蚀后, C/C-SiC-ZrC的抗烧蚀性能显著优于C/C-SiC, 其线烧蚀率下降43.8%, 质量烧蚀率下降25%。在超高温阶段, C/C-SiC-ZrC复合材料基体的ZrC氧化生成的ZrO2溶于SiC氧化生成的SiO2中, 形成黏稠的二元玻璃态混合物, 有效阻止了氧化性气氛进入基体内部。   相似文献   

10.
为了研究烧蚀时间对C/C-SiC复合材料在高超声速富氧环境下烧蚀机制的影响规律,采用富氧环境下的高超声速烧蚀试验技术,对“化学气相渗透+先驱体浸渍裂解”混合工艺制备的针刺C/C-SiC复合材料动态烧蚀机制进行研究,并采用电子扫描显微镜观察烧蚀表面形貌。研究表明:在极端苛刻的高超声速富氧烧蚀环境下,C/C-SiC复合材料能够短时抵抗高温、高压、高超声速燃气射流的氧化工作环境。材料经高超声速富氧烧蚀10 s、20 s、30 s、40 s及50 s后的质量烧蚀率分别为0.021 g/s、0.025 g/s、0.027 g/s、0.026 g/s与0.034 g/s。C/C-SiC复合材料在高超声速富氧环境下的动态烧蚀行为主要受热化学烧蚀与机械剥蚀两种烧蚀机制共同作用。在初始阶段,SiO2保护膜的存在有效阻止了氧化性组分向基体内部的扩散,仅材料中心区域存在轻微热化学烧蚀;烧蚀试验中期,材料的烧蚀主要表现为热化学烧蚀与机械剥蚀联合作用,并由热化学烧蚀向机械剥蚀呈渐变性转变;烧蚀试验后期,基体的深度反应使得材料的烧蚀主要表现为纤维与基体的大面积片状剥落。   相似文献   

11.
以酚醛树脂为基体,以平纹碳布和短切碳纤维两种结构形式的碳纤维为增强剂,制备碳纤维增强的碳/酚醛复合材料。采用氧/乙炔烧蚀实验对复合材料的耐烧蚀性能进行了对比性研究,采用电子拉力试验机对复合材料的弯曲性能进行表征,采用扫描电镜对复合材料烧蚀形面进行观察,并通过固体火箭发动机对复合材料的烧蚀性能进行考核验证。研究结果表明:以这两种结构形式的碳纤维为增强剂制备的碳/酚醛复合材料,其氧乙炔质量烧蚀率的大小与碳纤维丝束的大小具有正相关的特性,碳纤维丝束越小碳纤维质量烧蚀率越低,当碳纤维增强剂处于单丝状态时,复合材料的氧乙炔质量烧蚀率达到最低为0.046 g/s,并且碳纤维的型号规格对复合材料氧乙炔质量烧蚀率的影响变小。固体火箭发动机实验表明,单丝状态下的碳纤维/酚醛复合材料的抗烧蚀冲刷性能明显优于束状碳纤维/酚醛复合材料。  相似文献   

12.
分别以密度为0.15 g/cm~3的铺层炭纤维毡和炭纤维穿刺编织体作增强体,采用酚醛树脂浸渍炭纤维,经溶胶-凝胶过程,制备出不同密度和结构的酚醛气凝胶/炭纤维复合材料(PAC)。研究表明,所制复合材料具有轻质(0.27~0.40 g/cm~3)和低热导率(0.056~0.068 W·(m·K)~(-1))特点;炭纤维穿刺编织体复合材料(P-PAC)的弯曲强度是铺层炭纤维毡复合材料(L-PAC)的2倍,当P-PAC密度为0.40 g/cm~3时,其弯曲强度可达35.9 MPa;P-PAC具有更优的耐烧蚀性能,在2 000℃、60 s的烧蚀条件下,其质量烧蚀率为0.0043 g/s、线烧蚀率为0.0147 mm/s。酚醛粒子因纳米尺寸效应能够完全分解、蒸发、升华,充分带走表面热,而气凝胶多孔结构也有效的阻止表面热量向内部传递,因而酚醛气凝胶/炭纤维复合材料具有优异的微烧蚀/隔热一体化功能。  相似文献   

13.
以碳纤维无纬布/碳纤维网胎叠层针刺预制体为增强体, 经化学气相渗透(CVI)联合沥青高压碳化(HPIC)工艺制备了热解碳+沥青碳双元基针刺C/C喉衬材料, 利用X射线断层扫描(μ-CT)和扫描电镜(SEM)表征了材料的微观结构, 采用等离子烧蚀试验考察了针刺喉衬材料X-Y纤维铺层面(0°)、Z向针刺面(90°)以及两者间过渡层面(23°、45°和68°)的烧蚀性能。结果表明, 采用CVI+HPIC组合工艺能使针刺材料达到高致密态, 获得了孔隙率仅为4%的C/C材料, 材料内部孔隙呈离散态分布, 其中98%的孔隙为小于20 μm的小孔。烧蚀结果显示, 针刺C/C材料不同区域的烧蚀性能存在差异, 从X-Y层面(0°)到Z向针刺面(90°), 其耐烧蚀性能呈先增强后减弱的趋势, 68°层面耐烧蚀性能最好, 线、质量烧蚀率分别为0.056 mm/s、0.050 g/s。烧蚀面纤维的排布是影响烧蚀性能的关键因素, 68°层面因形成的尖端烧蚀模式占比较高, 表现出最佳的耐烧蚀性能。  相似文献   

14.
为了提高航母舰载机燃气导流板的性能,对碳/碳-碳化硅(C/C-SiC)复合材料开展制备和性能研究。采用轴棒法编制预制体,采用化学气相渗透工艺制备试件。将试件在舰载机的尾流中做模拟起飞工况的飞行试验。采用电子天平和千分尺测量试件的烧蚀率,采用能谱分析测量燃烧产物的成份,采用扫描电镜观察试件烧蚀后的微观形貌的变化,并对试件的烧蚀机理进行分析。结果表明:试件的质量烧蚀率为0.0405 g/s,线烧蚀率为0.0488 mm/s;试件中SiC在高温下反应生成的SiO_2在碳纤维的周围沉积,形成了包鞘结构,有效地阻滞了氧化反应向内部继续传递,从而降低了试件的烧蚀率,材料总体表现出优异的抗烧蚀性能。  相似文献   

15.
碳纤维/有机硅改性环氧树脂复合材料性能研究   总被引:6,自引:2,他引:4  
介绍了一种碳纤维/有机硅改性环氧树脂复合材料的性能研究情况.对该复合材料的力学性能、热常数和烧蚀性能进行了初步测试.结果表明,其拉伸强度达到558MPa,拉伸模量达到44.0GPa,层间剪切强度为16.6MPa,导热系数不超过0.3 W/(m*K),氧-乙炔烧蚀的线烧蚀率为0.049mm/s,质量烧蚀率为0.0595g/s.通过与常用的碳/酚醛材料比较,碳纤维/有机硅改性环氧树脂复合材料的性能较优.  相似文献   

16.
采用包埋法、超音速等离子喷涂结合化学气相沉积工艺在C/C复合材料表面制备了SiC/ZrB_2-SiC/SiC复合涂层。借助XRD和SEM等测试手段对所制备复合涂层的微观结构进行表征,采用恒温氧化实验及氧乙炔烧蚀实验考察涂层复合材料的高温抗氧化和抗烧蚀性能。结果表明,所制备涂层复合材料在900,1100,1500℃均具有较好的高温抗氧化性能,涂层氧乙炔烧蚀60 s后,质量烧蚀率和线烧蚀率分别为-0.05 mg/s和0.56μm/s。表明所制备的ZrB_2-SiC基复合涂层在为C/C复合材料提供良好的抗烧蚀保护的同时,可对材料提供较宽温度范围的抗氧化保护。  相似文献   

17.
以ZrB2为改性剂,采用热压工艺制备了碳布/酚醛复合材料,通过氧/乙炔烧蚀实验对复合材料的烧蚀性能进行了研究,利用扫描电镜和能量色散谱仪对复合材料烧蚀形貌和成分进行了分析。结果表明:经氧/乙炔焰烧蚀后,在复合材料表面形成了一层陶瓷层,其质量烧蚀率为0.04585g/s,线烧蚀率为-0.013mm/s,经二次烧蚀后,复合材料的质量烧蚀率为0.0096g/s。当ZrB2和POSS配合使用改性碳布/酚醛复合材料时,碳布/酚醛复合材料的质量烧蚀率可达0.025g/s,二次质量烧蚀率可达0.0089g/s。  相似文献   

18.
以聚合有机锆与聚碳硅烷组成的共溶前驱体为原料, 采用溶液浸渍-裂解(PIP)工艺制得了2D C/C-ZrC-SiC复合材料, 对复合材料的超高温烧蚀性能进行了研究. 利用SEM和XRD对烧蚀后材料的微观结构和物相组成进行分析, 探讨了复合材料的抗烧蚀机理. 结果表明, 复合材料的质量烧蚀率和线烧蚀率随着ZrC含量的增加先减小后增大. 其中ZrC含量为17.45vol%的复合材料具有最优的抗烧蚀性能, 即在表面温度为2200℃, 等离子焰烧蚀300s后, 其质量烧蚀率仅为1.77mg/s, 线烧蚀率为0.55μm/s. 研究发现, 材料表层的ZrC氧化生成的ZrO2溶于SiC氧化生成的SiO2中, 形成粘稠的二元玻璃态混合物, 有效阻止氧化性气氛进入基体内部, 对抗超高温烧蚀起到协同作用.  相似文献   

19.
针对酚醛树脂(RF)耐热性不足、抗烧蚀性能差,且SiO2粒子与酚醛树脂相容性的问题,采用共凝胶法制备纳米级的SiO2/RF杂化气凝胶,通过构建凝胶网络互穿结构,增加两相相容性,探究SiO2/RF杂化气凝胶的微观结构、化学结构和热物理性能。制备得到硅改性酚醛/碳纤维复合材料,并对改性前后复合材料的烧蚀性能进行比较。结果表明,不同硅含量的杂化气凝胶具有凝胶骨架和孔隙双连续的结构特性,密度分别在0.145~0.160 g/cm3之间。随着硅含量提高,杂化气凝胶残留率增加,Si—O键吸收振动峰更明显,但XRD无衍射峰。综合考虑孔径分布及热物理性能,选取性能最优的杂化气凝胶制备硅改性酚醛/碳纤维复合材料,改性后复合材料的质量烧蚀率为0.046 g/s,线烧蚀率为0.074 mm/s。与未改性的复合材料相比,质量烧蚀率降低了20.7%,线烧蚀率降低了21.3%,改性后材料的抗氧化性和烧蚀后的残留率得到明显提升。  相似文献   

20.
采用反应熔渗法(RMI)制备出密度为3.288 g/cm3的ZrC-SiC/(C/C)复合材料,采用SEM-EDS、XRD和TEM等分析手段研究了ZrC-SiC/(C/C)复合材料的微观组织结构。结果表明:陶瓷相填充充分且均匀分布在C/C复合材料基体中,其内部组织主要由ZrC、SiC、热解炭(PyC)和碳纤维(CF)组成。熔渗剂反应充分,复合材料内部未检测到残余未反应金属Zr、Si。采用氧乙炔烧蚀设备检测ZrC-SiC/(C/C)复合材料在2 500℃下,烧蚀时间分别为30 s、60 s和90 s的烧蚀性能,其质量烧蚀率分别为5.667 mg/s、2.907 mg/s和3.030 mg/s,线烧蚀率分别为1.001 μm/s、4.662 μm/s和4.450 μm/s。试验结果表明,在高温烧蚀过程中,ZrC-SiC/(C/C)复合材料烧蚀中心区陶瓷相逐渐氧化生成ZrO2和SiO2;生成的ZrO2和SiO2混合物保护并填充复合材料烧蚀孔隙,阻止氧化反应向材料内部进行,有效提高了材料的烧蚀性能。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号