首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了改善大载荷工况下零件的耐磨损性能,提高其使用寿命,采用阴极真空电弧离子镀和微波等离子体辅助化学气相沉积复合工艺在轴承钢(9Cr18)表面制备了无承载过渡层、(Cr/CrN)x周期承载过渡层和CrN1…CrNx梯度承载过渡层三种结构的Cr-DLC复合涂层。通过拉曼光谱(Raman)和X射线衍射仪(XRD)研究了不同Cr靶电流下Cr-DLC涂层的化学成分和结构,采用扫描电镜(SEM)观察了涂层的微观结构,并采用纳米压痕、显微划痕和摩擦磨损试验对复合涂层的力学性能和摩擦学性能进行了评价。结果表明,Cr掺杂DLC涂层中镶嵌了CrC晶粒,涂层的纳米硬度可达30 GPa以上;带有梯度CrNx承载层的Cr-DLC复合涂层的力学性能和耐磨性能最好,与基底的结合强度可达52 N,磨损率为13.8×10-7mm3/(N·m),是基底材料的1.5%;大载荷摩擦试验表明,有梯度承载层的Cr-DLC涂层在800 N载荷下可保持1 000 s内不被破坏;Falex试验表明,有梯度...  相似文献   

2.
为了实现损伤Cr12MoV钢激光再制造,采用激光熔覆Ni60合金制备无开裂涂层。利用着色探伤剂、硬度计、光学显微镜(OM)、X射线衍射仪(XRD)和摩擦磨损仪对所制备Ni60合金涂层的表面开裂、硬度、金相组织进行分析,并用摩擦磨损试验机对比研究了Ni60合金涂层和Cr12MoV钢的摩擦磨损性能。结果表明,当Ni60合金涂层长度L≤9 mm时,涂层表面无开裂;当Ni60合金涂层长度L>9 mm时,开裂区出现在母材邻近区,且随着涂层长度增大,开裂区也出现在涂层表面。要抑制激光熔覆过程中Ni60合金近母材区开裂,关键在于减少热输入对母材区的作用时间。最后,通过优选表面硬度相近的Ni60合金涂层和Cr12MoV钢进行摩擦磨损性能测试,发现两者的摩擦系数与耐磨性能相近,可望为损伤Cr12MoV钢激光再制造提供参考。  相似文献   

3.
应用线性离子束复合磁控溅射技术在不锈钢和硅片基体上制备DLC膜,研究了基体偏压和过渡层的厚度和结构对DLC薄膜结构和性能的影响。结果表明,在过渡层相同偏压为-200 V的条件下,薄膜中的sp3键含量更低,但是薄膜结构致密性的提高使其硬度和膜基结合力反而提高;在偏压为-200V的条件下,随着过渡层厚度及层数的增加DLC薄膜中sp3含量均降低,同时过渡层和多层薄膜的硬度减小;在偏压为-100V条件下,过渡层厚度和层数对DLC薄膜sp3的含量没有明显的影响。当过渡层厚度为1.7μm、结构为Cr/CrC时,在11Cr17不锈钢基体上可制备出厚度为4.92μm、硬度为29.4 GPa、摩擦系数小于0.1、结合力高于70 N综合性能最佳的DLC薄膜。  相似文献   

4.
通过钢/类金刚石(DLC)薄膜摩擦副在干摩擦4、122油和L252脂润滑条件下的球-盘摩擦学试验,对比分析润滑条件、载荷、速度对DLC膜摩擦系数的影响,利用原子力显微镜分析膜层磨损性能,研究润滑条件对膜层磨损寿命的影响。结果表明:油、脂润滑下DLC膜最大静摩擦系数分别减小了17%和38%;从0~2000 r/min转速范围内,DLC膜摩擦系数随转速增加而减小,油润滑下相比干摩擦DLC膜摩擦系数小15%~48%,脂润滑下相比干摩擦DLC膜摩擦系数在0~500 r/min转速范围小,超过500 r/min后干摩擦DLC膜摩擦系数小;油和脂润滑条件下,DLC膜层的磨损程度明显降低,磨损率相比干摩擦条件下分别减小了7.4倍和15.5倍。  相似文献   

5.
为了提高AM60镁合金的耐腐蚀性能,采用机械涂覆的方法在合金表面制备Cr涂层。通过XRD、视频显微镜、SEM、显微硬度分析等方法对表面涂层的物相、截面形貌、涂层的显微硬度等进行表征,利用电化学工作站对涂覆Cr前后的AM60镁合金的耐蚀性能进行分析。结果表明:AM60镁合金表面成功涂覆了Cr涂层,所制备涂层与基体结合致密,涂覆效果较好;同时,涂层的显微硬度高达到1 132 HV,较基体提高了1.96倍;球料比为10∶1和20∶1时,球磨时间为20 h和15 h时所制备的膜层耐腐蚀性能较好,和基体相比,所制备样品的自腐蚀电流密度均降低了3个数量级,自腐蚀电位均大幅提高,阻抗谱半径也均增加,在模拟海水中的耐腐蚀性能都得到明显改善。因此,在该实验条件下,Cr涂层的最佳制备工艺为:球料比为10∶1,球磨时间为20 h。   相似文献   

6.
为了提升8Cr4Mo4V钢表面的减摩耐蚀性能,利用真空磁控溅射镀膜技术,在单晶硅P(111)、8Cr4Mo4V钢表面分别制备了WCx和CrN/WCx2种涂层.采用扫描电子显微镜(SEM)观察了涂层截面形貌,采用UMT高温摩擦磨损试验机、台阶仪、纳米压痕仪、电化学工作站和盐雾试验机分别研究了8Cr4Mo4V钢和2种涂层的摩擦磨损性能、硬度和弹性模量、电化学腐蚀性能和耐盐雾腐蚀性能.结果 表明:涂层截面结构致密均匀,涂层的增加使8Cr4Mo4V钢的摩擦系数降低至0.20以下,磨损率降低2~3个数量级,纳米硬度提高3倍以上,弹性模量降低24%左右,电化学腐蚀降低1个数量级,耐盐雾性能明显提升,涂层起到了很好的保护基材的作用.  相似文献   

7.
为提高316L不锈钢耐高温液态铅铋的腐蚀能力,通过使用同轴送粉的激光熔覆方式,在316L不锈钢表面制备一层Stellite6合金涂层,将其放入400℃的高温液态铅铋中进行500 h高速流腐蚀试验,其中相对流速设置为2.56 m/s.分析涂层的微观组织、物相组成、元素分布、显微硬度值等的变化规律,以及该涂层耐液态铅铋的腐蚀性能.涂层组织由等轴晶、树枝晶、胞状晶及平面晶组成,搭接区晶粒沿不同方向长大;涂层主要有γ-Co、CoCx、(Cr,Fe)7 C3及M23 C6等物相;各组分元素在涂层表面均匀分布,Co、Cr与Fe等元素在基体316L与涂层之间发生明显扩散;Stellite6涂层的硬度平均值为基体材料316L的2.3倍,且最高达到556.8HV.在进行高温液态铅铋高速流腐蚀后,316L不锈钢表面生成了大面积且连续的氧化物,存在大量微型腐蚀坑,Stellite6涂层表面仅存在少量氧化物,未发现明显的腐蚀坑,较好地维持了原貌;Stellite6涂层表面粗糙度值为1.0μm,而316L经腐蚀后的表面粗糙度为2.4μm.Stellite6合金涂层能够有效地提高316L不锈钢基体在高温液态铅铋合金中的耐腐蚀性能.  相似文献   

8.
为改善铝合金零部件的摩擦磨损特性,采用微弧氧化和射频磁控溅射技术,在2A12铝合金表面制备Al2O3/CrNx复合膜。用X射线衍射仪、涡流测厚仪、纳米硬度仪、微摩擦磨损试验机、非接触表面三维形貌仪及扫描电镜对Al2O3涂层及复合膜的相组成、膜厚、纳米硬度、摩擦磨损特性和磨痕形貌等进行了研究。实验结果表明:32μm厚的多孔Al2O3陶瓷涂层由α-Al2O3和γ-Al2O3相组成,外层1.2μm厚的CrNx膜由单质Cr,Cr2N和CrN相组成;Al2O3涂层及Al2O3/CrNx复合膜的摩擦因数和磨损率都随法向载荷的增加而增大,在相同实验参数下,复合膜的摩擦因数和磨损率都远小于Al2O3涂层的,这表明在Al2O3涂层表面沉积CrNx膜能明显改善其摩擦磨损特性,将延长对偶件的使用寿命。  相似文献   

9.
杨帆  丁建伟  刘豪  邱长军  李胜 《材料导报》2021,35(20):20076-20080,20112
为了提高Cu耐GaIn合金腐蚀的性能,采用多弧离子镀在纯Cu表面溅射Cr涂层和Al涂层.再利用原位反应和溶胶凝胶法制备出Cr/Cr2 O3/Al2 O3复合涂层、Cr/CrN/SiO2复合涂层以及Al/Al2 O3/Al2 O3复合涂层,将样品置于60℃和200℃的GaIn合金中进行腐蚀试验.GaIn合金会对Cu样表面造成严重的点状腐蚀,但在腐蚀过程中铜镓金属间化合物会附着在铜样表面,从而降低GaIn合金对铜块的腐蚀速率.GaIn合金会对Al/Al2 O3/Al2 O3涂层造成严重的腐蚀,使涂层大面积剥落.Cr/CrN/SiO2涂层在GaIn合金中较为稳定,腐蚀程度低,但最外层的SiO2出现开裂和剥落.Cr/Cr2 O3/Al2 O3涂层在GaIn合金中无明显腐蚀现象.随着腐蚀温度的升高,GaIn合金对样品的腐蚀速率也会有所提高.Cu在200℃时的腐蚀速率是在60℃时的269倍以上,黏附在Cu表面的腐蚀产物主要为CuGa2.Cr/Cr2 O3/Al2 O3涂层抗GaIn合金腐蚀性能最好,Cr/Cr2 O3/Al2 O3涂层在200℃的GaIn合金中腐蚀速率为0.0495μm/h,且对Cu的热导率影响在1%左右.  相似文献   

10.
采用高压直流等离子体氮化技术,对医用锻造钴铬钼合金进行表面氮化处理,考察了氮化温度对钴铬钼合金摩擦性能及润湿性能的影响。运用X射线衍射仪分析氮化层物相组成,显微硬度计和光学动/静态接触角仪测试合金表面显微硬度及接触角数值;利用球-盘摩擦实验在干摩擦条件下对氮化层的摩擦磨损性能进行测试。实验结果表明:医用锻造钴铬钼合金经高压直流等离子体氮化处理后,形成硬质化合物CrN和Cr2N,氮化层厚度4.5~9.5μm,合金显微硬度随氮化温度升高而增加,最高可达788HV。与未处理合金试样相比,氮化合金的亲水性及耐磨损性得到明显改善,氮化温度为800℃时磨损率最低,磨痕宽度最窄,耐磨损性能最佳。  相似文献   

11.
离子束类金刚石膜的摩擦磨损及耐蚀性能   总被引:2,自引:0,他引:2  
研究了沉积类金刚石膜 (DLC)的 4 0Cr钢的摩擦磨损性质 ,定量分析了DLC膜的耐蚀性。研究表明 :DLC膜能显著降低 4 0Cr钢表面摩擦系数和表面粗糙度 ,在相同载荷条件下DLC膜的磨损速率比 4 0Cr钢低 2个数量级 ;在各种腐蚀介质中 ,DLC膜的腐蚀速率明显低于 4 0Cr的 ,且其电极电位、自然腐蚀电位和点蚀击穿电位均高于 4 0Cr钢的 ,表明DLC膜可提高 4 0Cr钢的耐蚀性能  相似文献   

12.
由于304不锈钢在中、高温下摩擦学性能较差,制约了其在重要摩擦运动副零部件上的应用。为改善304不锈钢的摩擦学性能,以Ni60粉末为增韧相,WS2为合成润滑相的前驱化合物,TiC为高硬度耐磨相,采用高能激光束在其表面原位合成自润滑耐磨复合涂层。利用X射线衍射仪、扫描电子显微镜、显微硬度计、摩擦磨损试验机和探针式材料表面磨痕测量仪表征涂层和基体的物相、微观结构、显微硬度与表面形貌,并系统研究涂层和基体在20,300,600,800℃下的摩擦学性能及其磨损机理。结果表明:涂层主要由Cr0.19Fe0.7Ni0.11,Ti2SC,Fe2C,Cr7C3,CrS和WS2组成;涂层的平均显微硬度(302.0HV0.5)略高于基体(257.2HV0.5),但涂层上部区域的硬度(425.4HV0.5)约为基体的1.65倍;涂层在所有等温摩擦学实验中摩擦因数和磨损率均低于基体,300℃时涂层润滑效果最好,摩擦因数为0.3031,600℃时涂层耐磨效果最好,磨损率为9.699×10^-5 mm^3·N^-1·m^-1。  相似文献   

13.
目的 采用电子束表面改性技术对Inconel 625镍基合金进行电子束表面合金化(EBSA)处理,制备性能良好的TiC涂层,提高Inconel 625镍基合金的表面性能。方法 采用不同的电子束扫描速度(80、100、120 mm/min)在Inconel 625镍基合金表面制备TiC涂层,使用扫描电镜(SEM)拍摄合金区横截面进行EDS能谱分析,使用电子背散射衍射仪(EBSD)对合金层进行EBSD表征分析,使用显微硬度仪测量EBSA后的表面硬度,使用摩擦磨损试验机(RTEC)测试表面耐磨性、生成摩擦曲线并拍摄磨损表面的三维形貌。结果 从宏观形貌上来看,在80 mm/min扫描速度下涂层成形质量最好。微观组织测试结果表明,随着扫描速度的增大,平均晶粒尺寸增大。显微硬度测试结果表明,随着扫描速度的增大,表面硬度呈现降低的趋势,但涂层表面硬度均高于基材硬度。当扫描速度为80 mm/min时,TiC强化颗粒较多分布在表面,其表面硬度最高,为457HB,与基材相比,表面硬度提高了1.936倍。耐磨性测试结果表明,当扫描速度为80 mm/min时,磨损体积和磨损率最低,分别为0.913 1 mm3和3.043 7,相较于基材,磨损率降低了30.48%。结论 当扫描速度为80 mm/min时,采用电子束熔覆技术在Inconel 625镍基合金表面制备的TiC涂层可显著改善Inconel 625镍基合金表面的硬度、耐磨性。  相似文献   

14.
采用真空电弧熔炼法制备直径为7 mm AlCrNiFeTi高熵合金(high-entropy alloy,HEA)作为电极,使用电火花沉积技术在304不锈钢表面成功制备了AlCrNiFeTi高熵合金涂层。通过XRD、OM、EDS、SEM、显微硬度计、摩擦磨损试验机对涂层的微观组织结构和摩擦磨损性能进行研究。结果表明,AlCrNiFeTi电极与涂层均以BCC1和BCC2简单固溶体为主,电极微观组织结构呈典型的树枝晶。涂层由沉积点堆叠铺展形成,表面均匀致密呈橘皮状、凸凹不平,为喷溅花样展开,涂层截面结构无宏观缺陷,厚度约为59.67μm。AlCrNiFeTi涂层最大显微硬度为587.3HV0.2,比基材的硬度提高了约2.45倍。随着载荷的增大,涂层的磨损机制由氧化磨损和轻微磨粒磨损转变为磨粒磨损和黏着磨损。当摩擦载荷为5 N时,磨损率为1.213×10-3 mm3/(N·m),摩擦因数仅为0.446,涂层的磨损率较基材的磨损率减小了约28.3%。  相似文献   

15.
利用激光熔覆技术在TC11合金表面成功制备NiCrBSi-Ti_3SiC_2-CaF_2-WC耐磨自润滑涂层。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)分析熔覆层的物相及微观组织;利用显微硬度仪对其硬度进行了测量。分别在室温(25℃),300℃和600℃条件下对涂层进行干滑动摩擦磨损实验,并分析其磨损机理。结果表明:涂层主要由γ-Ni共晶相,M_(23)C_6,TiC,(Ti,W)C,Ti_5Si_3硬质相以及少量的Ti_3SiC_2,CaF_2,TiF_3润滑相组成。激光熔覆层的显微硬度大幅度提高,显微硬度平均值为863.63HV_(0.2),约为基体的2.46倍,熔覆层总体摩擦因数和磨损率明显低于基体,在300℃条件下,涂层具有最低的摩擦因数(0.275)和磨损率(4.8×10~(-5)mm~3·N~(-1)·m~(-1))。  相似文献   

16.
镁基材料表面进行微弧氧化处理(MAO)制备的多孔结构的陶瓷涂层在干摩擦环境下的摩擦系数较高,本文采用微弧氧化结合非平衡磁控溅射技术在纯镁基体表面制备出了MAO/CrN复合涂层。通过扫描电镜、显微硬度测试、X射线衍射仪能谱、摩擦磨损实验等手段研究了复合涂层的形貌、成分及摩擦磨损性能。结果表明:MAO/CrN复合涂层相比单层的MAO涂层力学与摩擦性能得到显著提高,其中硬度升高48%,载荷为1 N时的平均摩擦系数降低32.3%,转速为700 r/min时,磨损率降低达到74%。CrN/MAO复合涂层与WC硬质合金球在干摩擦过程中,在表层CrN涂层被磨穿之前,复合涂层磨损形式以黏着磨损和疲劳磨损为主。在表层CrN涂层被磨穿MAO涂层未被磨穿前,复合涂层的磨损形式以三体磨粒磨损为主。  相似文献   

17.
为了研究MoS2-Ti薄膜与9Cr18钢、W-DLC和DLC薄膜的摩擦学行为,分别采用磁控溅射技术和等离子体增强化学气相沉积技术在9Cr18钢表面沉积了MoS2-Ti薄膜、W-DLC和DLC薄膜。用扫描电子显微镜(SEM)、能量色散谱仪(EDS)和X射线衍射仪(XRD)研究了薄膜的表面形貌、化学成分和相组成。利用纳米压痕仪和球-盘摩擦试验机对不同薄膜的纳米硬度和摩擦学性能进行了分析。研究结果表明,MoS2-Ti薄膜与DLC薄膜的摩擦因数和磨损率最小。相比MoS2-Ti薄膜与不镀膜的9Cr18钢球摩擦副,MoS2-Ti薄膜与W-DLC薄膜摩擦副的摩擦因数和磨损率没有减小。MoS2-Ti薄膜与W-DLC薄膜摩擦副的磨损机制为磨粒磨损和黏着磨损,与DLC薄膜摩擦副的磨损机制为黏着磨损。摩擦副表面沉积DLC薄膜有助于降低MoS2-Ti薄膜的摩擦因数和磨损率。  相似文献   

18.
为进一步拓展Al FeSi系耐磨涂层的应用领域,对建筑用6063铝合金表面Al FeSi耐磨涂层施加不同载荷,分别测试研究了在干摩擦和浸入3.5%NaCl腐蚀溶液下时的摩擦磨损性能。结果表明:6063铝合金表面Al FeSi涂层表面没有发现明显涂层剥落,可以和基底形成良好结合状态。该涂层形成了微裂纹、孔洞与圆形未熔颗粒,经图像分析得到该涂层孔隙率在3%左右。干摩擦条件下,当载荷提高后,涂层试样与基底都出现了磨损体积增大,并且基底达到了比涂层更大的磨损体积;涂层磨损率都明显小于基底,涂层具备比基底更优的耐磨性。浸入腐蚀溶液中,当施加的载荷提高后,涂层与基体试样都形成更大的磨损体积。此时涂层磨损表面生成了许多裂纹与部分快剥落的块状涂层,基体具有更大粗糙度的磨损表面。低硬度基底受到磨损损害的程度比电化学腐蚀作用更明显。  相似文献   

19.
近些年来表面织构化与表面涂覆技术在提高摩擦学性能方面取得了良好的进展,有越来越多的研究将表面织构技术与涂覆技术进行融合,发现在适当的外界环境下合适的织构化参数与DLC涂层复合处理后显现出优异的摩擦学特性,两者间做到了1+1大于2的效果。表面织构化已经广泛的应用在改善材料摩擦性能等方面,然而其在干摩擦条件下可能并不能起到很好的润滑效果。DLC涂层被世间公认为是有效的固体润滑剂,它具有良好的减摩、抗磨性,但涂层却有着吸附力差的缺点,表面织构可以增大涂层与基材之间的有效结合强度,增加表面的腐蚀能力,进而可以提高涂层的摩擦学性能、腐蚀性能、生物相容性。织构化与DLC涂层的结合可以在航空、汽车、机械等领域得到广泛应用,进而提高产品的性能和可靠性。主要介绍表面织构化与DLC涂层复合改性处理后材料的摩擦磨损特性。并从织构的几何参数、实验条件、接触方式、摄入元素、涂层厚度以及仿真分析等几方面进行阐述。为帮助后续的研究方向提供参考。最后对织构与涂层复合改性方面的发展趋势进行展望。  相似文献   

20.
中频磁控溅射沉积DLC/TiAlN复合薄膜的结构与性能研究   总被引:2,自引:2,他引:0  
采用中频非平衡磁控溅射沉积工艺,并施加霍尔离子源辅助沉积,在高速钢W18Cr4V及单晶硅基体上制备了梯度过渡的DIE/TiAlN复合薄膜.利用扫描电镜(SEM)、X射线光电子能谱仪(XPS)、显微硬度计、摩擦磨损仪等分析检测仪器对DLC/TiAlN复合薄膜的表面形貌、晶体结构、显微硬度、耐磨性等性能进行了检测分析.实验及分析结果表明:DLC/TrAlN薄膜平均膜厚为1.1μm,由于薄膜中的Al含量较多,使得复合薄膜的表面比DLC薄膜的表面要粗糙一些;通过对复合薄膜表层的XPS分析可知,ID/IG为2.63.由XPS深层剖析可知,DLC/TiAlN薄膜表层结构与DLC薄膜基本相同,里层则与TiAlN薄膜相似.在梯度过渡膜中,复合膜层之间的界面呈现为渐变过程,结合的非常好.DLC/TiAlN薄膜的显微硬度为2030 HV左右.与DLC薄膜显微硬度接近,低于TiAlN薄膜的显微硬度.但是DLC/TiAlN薄膜的耐磨性要好于TiAlN薄膜和DLC薄膜;DLC/TiAlN薄膜的耐腐蚀性能略好于DLC薄膜.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号