首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal conductivity and thermal diffusivity of liquid n-pentane have been measured over the temperature range from 293 to 428 K at pressures from 3.5 to 35 MPa using a transient hot-wire instrument. It was determined that the results were influenced by fluid thermal radiation, and a new expression for this effect is presented. The uncertainty of the experimental results is estimated to be better than ±0.5% for thermal conductivity and ±2% for thermal diffusivity. The results, corrected for fluid thermal radiation, are correlated as functions of temperature and density with a maximum uncertainty of ±2% for thermal conductivity and ±4% for thermal diffusivity. Derived values of the isobaric specific heat are also given.  相似文献   

2.
The local thermal diffusivity is of special interest for quality control of materials grown by physical vapor transport. A typical specimen of these materials consists of single crystals with sizes up to 1 mm. The conventional laser-flash method delivers only an average value of the thermal diffusivity of these polycrystalline materials. A local sensitive measurement system is desirable to determine the thermal diffusivity of single grains with diameters of 100 μm and above. In this work a modification of a standard laser-flash apparatus is presented. The key feature is the position control of the specimen in the plane perpendicular to the laser beam and the IR-detection unit. The mechanical precision of the position control is better than 100 μm. The IR-detection unit consists of a MCT-detector, a polycrystalline IR-fiber, and a system to focus on the sample surface. To study the experimental potential of the modified laser-flash method, measurements of the local thermal diffusivity of a multiphase specimen with known microscopic thermal properties are presented. The obtained results are discussed with respect to the energy profile of the laser beam and the alignment of the IR-detection unit. It is shown that the thermal diffusivity of a small specimen area with a diameter of 2 mm can be determined with an uncertainty of ±5 %. For a polycrystalline aluminum nitride (AlN) specimen with grain sizes of the order of 1 mm, a mean value for the thermal diffusivity of (72.1 ± 3.6) m2 · s−1 at room temperature is determined. A possible local variation of the thermal diffusivity cannot yet be observed. An improvement of the resolution is in progress. Paper presented at the Seventeenth European Conference on Thermopysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.  相似文献   

3.
Time resolved thermal lens (TL) spectrometry is applied to the study of the thermal diffusivity of edible oils such as olive, and refined and thermally treated avocado oils. A two laser mismatched-mode experimental configuration was used, with a He–Ne laser as a probe beam and an Ar+ laser as the excitation one. The characteristic time constant of the transient thermal lens was obtained by fitting the experimental data to the theoretical expression for a transient thermal lens. The results showed that virgin olive oil has a higher thermal diffusivity than for refined and thermally treated avocado oils. This measured thermal property may contribute to a better understanding of the quality of edible oils, which is very important in the food industry. The thermal diffusivity results for virgin olive oil, obtained from this technique, agree with those reported in the literature.Paper presented at the Seventeenth European Conference on Thermophysical Properties, September 5-8, 2005, Bratislava, Slovak Republic.  相似文献   

4.
The thermal transport properties of four commercially available AlN substrates have been investigated using a combination of steady-state and transient techniques. Measurements of thermal conductivity using a guarded longitudinal heat flow apparatus are in good agreement with published room temperature data (in the range 130–170 W · m–1 · K–1). Laser flash diffusivity measurements combined with heat capacity data yielded anomalously low results. This was determined to be an experimental effect for which a method of correction is presented. Low-temperature measurements of thermal conductivity and heat capacity are used to probe the mechanisms that limit the thermal conductivity in AlN.Paper presented at the Tenth Symposium on Thermophysical Properties, June 20–23, 1988, Gaithersburg, Maryland, U.S.A.  相似文献   

5.
The laser pulse method can be successfully applied to the measurement of thermal diffusivity of isotropic materials subject to some assumptions. For anisotropic materials, this method is applicable to the measurement of principal thermal diffusivity only on the condition that there is no difference in direction between the principal axis and that of the temperature gradient. After analyzing the heat conduction process in an anisotropic solid, it has been shown that large errors in the measurement of thermal diffusivity would exist if the direction of the principal axis deviates inconspicuously from that of the temperature gradient. The experimental results of thermal diffusivity of highly oriented pyrolytic graphite (HOPG) samples with various deviation angles have been compared with the analytical results. The laser pulse method is not applicable to measurements on semitransparent pyrolytic boron nitride (PBN). We adopted a two-layer composite sample to measure the thermal diffusivity of PBN in the c direction and a particular graphite-PBN composite sample has been prepared which has a very low thermal resistance at the interface. The thermal diffusivity and thermal conductivity of PG (below 2300°C) and PBN (below 1000°C) are given.Invited paper presented at the Ninth Symposium on Thermophysical Properties, June 24–27, 1985, Boulder, Colorado, U.S.A.  相似文献   

6.
The values of the coefficients of thermal expansion and compressibility, isobaric heat capacity and thermal diffusivity of three brominated saturated hydrocarbons of butyl bromide, hexyl bromide and heptyl bromide are measured in a heat-conducting calorimeter at a temperature of 298–363 K in the pressure range of 0.098–147 MPa. The experimental data on the isobaric heat capacity are compared to the calculation results. Generalized dependences are suggested to determine the heat capacity and thermal diffusivity.  相似文献   

7.
This paper presents absolute measurements for the thermal conductivity and thermal diffusivity of toluene obtained with a transient hot-wire instrument employing coated wires over the density interval of 735 to 870 kgm–3. A new expression for the influence of the wire coating is presented, and an examination of the importance of a nonuniform wire radius is verified with measurements on argon from 296 to 323 K at pressures to 61 MPa. Four isotherms were measured in toluene between 296 and 423 K at pressures to 35 MPa. The measurements have an uncertainty of less than ±0.5% for thermal conductivity and ±2% for thermal diffusivity. Isobaric heat capacity results, derived from the measured values of thermal conductivity and thermal diffusivity, using a density determined from an equation of state, have an uncertainty of ±3% after taking into account the uncertainty of the applied equation of state. The measurements demonstrate that isobaric specific heat determinations can be obtained successfully with the transient hot wire technique over a wide range of fluid states provided density values are available.  相似文献   

8.
The thermal diffusivity of a simulated fuel with fission products forming a solid solution was measured using the laser-flash method in the temperature range from room temperature to 1673 K. The density and the grain size of the simulated fuel with the solid solutions used in the measurement were 10.49 g · cm−3 (96.9% of theoretical density) at room temperature and 9.5 μm, respectively. The diameter and thickness of the specimens were 10 and 1 mm, respectively. The thermal diffusivity decreased from 2.108 m2 · s−1 at room temperature to 0.626 m2 · s−1 at 1673 K. The thermal conductivity was calculated by combining the thermal diffusivity with the specific heat and density. The thermal conductivity of the simulated fuel with the dissolved fission products decreased from 4.973 W · m−1 · K−1 at 300 K to 2.02 W · m−1 · K−1 at 1673 K. The thermal conductivity of the simulated fuel was lower than that of UO2 by 34.36% at 300 K and by 15.05% at 1673 K. The difference in the thermal conductivity between the simulated fuel and UO2 was large at room temperature, and decreased with an increase in temperature. Paper presented at the Seventeenth European Conference on Thermophysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.  相似文献   

9.
Nonuniform heating effect and heat loss effect from the specimen in the measurement of thermal diffusivity by the laser pulse heating method have been experimentally investigated using an axially symmetric Gaussian laser beam and a laser beam homogenized with an optical filter. The degree of error is theoretically estimated based on the solution of the two-dimensional heat conduction equation under the boundary condition of heat loss from the surface of the specimen in the axial direction and the initial conditions of axially symmetric nonuniform and uniform heating. A correction factor, which is determined by comparison of the entire experimental and the theoretical history curves, is introduced to correct the values obtained by the conventionalt 1,2 method. The applicability of this modified curve-fitting method has been experimentally tested using materials in the thermal diffusivity range 10−3 to 1 cm2·s−1. The experimental error due to the nonuniform heating and heat loss was reduced to approximately 3%.  相似文献   

10.
The thermal conductivities of three plasma-sprayed cermets have been determined over the temperature range 23–630°C from the measurement of the specific heat, thermal diffusivity, and density. These cermets are mixtures of Al and SiC prepared by plasma spray deposition and are being considered for various applications in magnetic confinement fusion devices. The samples consisted of three compositions: 61 vol% Al/39 vol% SiC, 74vol% Al/26vol% SiC, and 83 vol% Al/17 vol% SiC. The specific heat was determined by differential scanning calorimetry through the Al melt transition up to 720°C, while the thermal diffusivity was determined using the laser flash technique up to 630°C. The linear thermal expansion was measured and used to correct the diffusivity and density values. The thermal diffusivity showed a significant increase after thermal cycling due to a reduction in the intergrain contact resistance, increasing from 0.4 to 0.6 cm2·–1 at 160°C. However, effective medium theory calculations indicated that the thermal conductivities of both the Al and the SiC were below the ideal defect-free limit even after high-temperature cycling. The specific heat measurements showed suppressed melting points in the plasmasprayed cermets. The 39 vol% SiC began a melt endotherm at 577°C, which peaked in the 640–650°C range depending on the sample thermal history. Chemical and X-ray diffraction analysis indicated the presence of free silicon in the cermet and in the SiC powder, which resulted in a eutectic Al/Si alloy.Paper presented at the Ninth Symposium on Thermophysical Properties, June 24–27, 1985, Boulder, Colorado, U.S.A.  相似文献   

11.
This paper presents new absolute measurements of the thermal conductivity and of the thermal diffusivity of gaseous argon obtained with a transient hot-wire instrument. We measured seven isotherms in the supercritical dense gas at temperatures between 157 and 324 K with pressures up to 70 MPa and densities up to 32 mol · L–1 and five isotherms in the vapor at temperatures between 103 and 142 K with pressures up to the saturation vapor pressure. The instrument is capable of measuring the thermal conductivity with an accuracy better than 1% and thermal diffusivity with an accuracy better than 5%. Heat capacity results were determined from the simultaneously measured values of thermal conductivity and thermal diffusivity and from the density calculated from measured values of pressure and temperature from an equation of state. The heat capacities presented in this paper, with a nominal accuracy of 5%, prove that heat capacity data can be obtained successfully with the transient hot wire technique over a wide range of fluid states. The technique will be invaluable when applied to fluids which lack specific heat data or an adequate equation of state.  相似文献   

12.
Several recent advances made in the author's laboratory in the experimental apparatus and measuring procedures for precise measurements of thermophysical properties by the laser-flash method are reviewed. Heat-capacity measurement has been done on metals and ceramics within an accuracy of ±0.5% in the range from 80 to 800 K, and within ±2% from 800 to 1100 K. Thermal diffusivity has been also measured from 80 to 1300 K with reasonable corrections for heat leak and finite pulse width. As an example of the experimental results by the method, the data of heat capacity, thermal diffusivity, and thermal conductivity of vanadium-oxygen alloys containing 1.07 and 3.46 at.% of oxygen from 80 to 800 K are presented and compared with those of pure vanadium metal.Presented at the Japan-United States Joint Seminar on Thermophysical Properties, October 24–26, 1983, Tokyo, Japan.  相似文献   

13.
This is a companion to an earlier paper (on molten alkali metal chlorides) which gives experimental results for the thermal diffusivity of four molten alkali metal bromides: NaBr, KBr, RbBr, and CsBr. The measurements were performed with a forced Rayleigh scattering instrument at temperatures up to 1326 K. The overall uncertainty in the measured thermal diffusivity is estimated to be ±3 to ±11%, depending on the measured salts. The results converted to thermal conductivity show one of the smallest values among other earlier experimental data obtained mainly by the steady-state methods. It is also found that the temperature dependence of the thermal conductivity is weakly negative.  相似文献   

14.
Calcium soaps are materials that serve a wide range of industrial applications such as softeners, detergents, plasticizers, greases, lubricants, cosmetics, and medicines. In addition, calcium salts of saturated carboxylic acids are of interest because of their presence in the staple food of Mexicans and other Central American people: the corn tortilla. Because of their wide use in industry, a knowledge of the thermal properties of the alkaline metal soaps is of great importance. In the present work, the thermal diffusivity of butyric-Ca, valeric-Ca, caprilic-Ca, undecanoic-Ca, palmitic-Ca, and stearic-Ca salts has been determined by photoacoustics. The thermal diffusivity of these salts shows a linear dependence on the number of carbons in the aliphatic chain, and was found within the range 2.60×10–3 to 1.38×10–2cm2s–1, with the highest and lowest values corresponding to butyric-Ca and stearic-Ca, respectively.  相似文献   

15.
Thermal diffusivity measurements are carried out in nanofluids, solutions containing gold nanoparticles (~ 10–40 nm size), using the mode-mismatched dual-beam thermal lens technique. An Ar+ laser is used as the heating source, and an intensity stabilized He–Ne laser serves as the probe beam. This technique provides a reliable photothermal alternative for measuring thermal diffusivities of nanofluids and semitransparent samples. The characteristic time constant of the transient thermal lens was obtained by fitting the experimental data to the theoretical expression for the transient thermal lens. From this characteristic time, the fluid thermal diffusivity, which increases when the particle sizes increase was obtained. The size of the nanoparticles was obtained from transmission electron microscopy (TEM) analysis.Paper presented at the Seventeenth European Conference on Thermophysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.  相似文献   

16.
This paper decribes the Knudsen-effect errors of the transient line-source method used for accurate measurements of the thermal conductivity and thermal diffusivity of fluids. The analysis demonstrates that the instrument can be used with a good accuracy (>0.5%) to lower densities than previously thought. The principal errors are illustrated by measurements on propane in the temperature range 250–300 K at densities less than 9 kg · m–3.  相似文献   

17.
In this work, by considering four-layered functionally graded material (FGM) specimens of Cu/Ni and PSZ/NiCrAlY, the transient characteristics and homogeneity of heat conduction media have been studied. The thermal diffusivities of the considered specimens have been measured by the laser flash method. As the temperature response curve of a FGM is very similar to that of a homogeneous material, it is difficult to distinguish a FGM from a homogeneous material by the shape of the temperature responses. Therefore, the thermal diffusivity obtained from the half-time method is usually taken as the corresponding value of the thermal diffusivity. The apparent thermal conductivity, obtained from the corresponding value of the thermal diffusivity and the average of the heat capacity of each layer, is different from the effective thermal conductivity, obtained from the sum of the heat resistances of each layer. As the values of the heat capacity of materials exist over a certain range, and the heat capacity distribution can be predicted when the materials in a FGM are known, the amount of error that will be caused when the effective thermal conductivity is replaced by the apparent value can be determined. Also, the heterogeneity of a FGM, based on an evaluation of thermophysical properties, has been discussed.Paper presented at the Seventh Asian Thermophysical Properties Conference, August 23–28, 2004, Hefei and Huangshan, Anhui,P. R. China.  相似文献   

18.
Absolute measurements of the thermal diffusivity of liquid toluene were performed by photon correlation spectroscopy between 393 and 523 K near the saturation line. The experimental method is based on a time-resolved analysis of the laser light scattered from local equilibrium fluctuations in a transparent sample. enabling us to obtain the thermal diffusivity in macroscopic thermodynamic equilibrium. The experimental results are compared with previous data obtained with the same method, with the transient-hot-wire technique. and also with calculated values of thermal dilhusivity from reference data for thermal conductivity, heat capacity, and density. They demonstrate an agreement of 2.5%. which is within the uncertainty of the reference data.Paper presented at the Twelllh Symposium on Thermophysical Properties. June 19–24. 1994, Boulder, Colorado. U.S.A.Author to whom correspondence should be addressed.  相似文献   

19.
20.
The thermal diffusivity of elastomers (i.e., rubber-like materials) can change substantially with elastic finite deformation. Initially isotropic elastomers may be thermally anisotropic when deformed. Data from several experimental studies demonstrate significant changes in the thermal conductivity or diffusivity tensor with finite deformation. Formulating the thermal diffusivity tensor and deformation in terms of the reference configuration may aid in the development of constitutive relations by use of material symmetry. Illustrated here is a relationship between the diffusivity and deformation of representative materials during uniaxial and equibiaxial deformation. Each component of the diffusivity tensor appears to be related to the deformation in the direction of the component only. Paper presented at the Fifteenth Symposium on Thermophysical Properties, June 22–27, 2003, Boulder, Colorado, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号