首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
针对生物质气化再燃技术路线中焦油的价值及利用开展研究。通过热重-质谱联用仪分析典型农业废弃物在热解、气化过程中焦油组分的析出情况,并在管式流动实验台上研究焦油在生物质气化气还原NO中的作用以及焦油还原NO受当量比、温度等因素的影响规律,最后建立了甲苯还原NO的机制模型,并以停流动实验台的实验结果进行了验证。结果表明:苯、甲苯、苯乙烯和苯酚是具有代表性的焦油组分;焦油对生物质气化气还原NO有积极的作用;焦油组分还原NO存在最佳的当量比,并要求合适的温度窗口,需要关注聚合反应;甲苯还原NO机制(NO reduction by toluene,NRT)模型与实验结果拟合良好,模型的生成速率和消耗速率分析显示HCCO和C2H在焦油还原NO中具有重要作用。  相似文献   

2.
为了揭示再燃过程中地下气化煤气作为多组分还原性气体(H2、CO等)降低还原NO的影响规律,在气体反应器实验台上进行了多组分还原性气体脱硝的实验研究。实验结果表明:反应温度不变时,化学当量比增大,NO脱除率逐渐降低;化学当量比较低时,随着反应温度的升高,NO脱除率逐渐升高;化学当量比较高时,再燃区存在一个最佳反应温度条件;停留时间对多组分气体再燃脱硝的影响规律表明,为提高再燃过程的脱硝效率,在锅炉设计时应尽量增加再燃燃料在再燃区的停留时间;再燃燃料比的增加使再燃区还原性气体浓度增加,这必然提高NO与还原性气体的反应速率,有利于进一步提高NO脱除。实验结果有利于了解多组分还原性气体再燃降低还原NO特性,组织良好的燃烧条件,可为理论研究提供参考依据。  相似文献   

3.
为了探究煤与生物质在中高温度条件下共热解过程中热解气的释放特性及元素析出规律,本文采用固定床反应器对松木和兖州煤在800~1 200 ℃温度下进行中高温热解实验,借助傅立叶红外气体分析仪和氢气分析仪对热解气的组分进行在线测量,并探索其动力学释放特性。结果表明:各热解气中可燃气体主要为H2、CO和CH4;热解温度升高,共热解气中的H2产量会大幅增加,高达75.4 mg/g反应物,CO产量缓慢增加至184.3 mg/g反应物,CH4产量下降;共热解过程中,H2析出最晚且过程在30~200 s,CO的释放过程比CH4快,且释放体积分数峰值更高,可达61.1 μL/L;生物质的氮结构存在形式主要为更不稳定的氨基酸和蛋白质,热解时NH3和HCN析出更快但释放峰值更低;此外,煤和生物质共热解时的协同作用不影响CO和CH4的释放。本研究可为未来煤与生物质中高温闪速共热解制气以及低碳清洁能源的利用提供一定指导。  相似文献   

4.
活性炭吸附/微波解吸脱除烟气中SO2的实验研究   总被引:1,自引:0,他引:1  
利用微波反应器研究微波辐照功率(反应温度)、烟气流率,SO2浓度以及烟气共存成分对活性炭吸附性能及脱硫效率的影响。吸附实验结果表明,当空间流速达到900 h-1时,SO2在活性炭床的吸附容量达到27.66 mg/g;烟气流率增加,吸附容量下降;SO2浓度对吸附容量影响不明显;烟气中O2的含量为4%左右时,SO2吸附容量最大,随着O2含量的继续增加而有所下降;随着NO浓度的增加,SO2的吸附容量稍有上升又降至12.79mg/g;烟气含湿量低于6.4%时,水蒸气对SO2在活性炭床上的吸附有利。脱除实验研究表明,微波功率越高脱硫效率相应提高,NO浓度和含湿量增加脱硫效率下降。  相似文献   

5.
郑守忠  卢平 《热力发电》2007,36(10):9-13
在携带流反应装置中,研究了不同煤焦制备和反应条件下煤焦异相还原NO的特性,分析了煤种、热解条件(热解温度、煤粉热解时粒径和热解气氛)和反应条件(煤焦还原NO时的反应温度、环境气氛)等因素对煤焦还原NO特性的影响。结果表明,挥发分含量较高的煤种,其煤焦对NO的还原能力较强;热解温度的提高导致生成煤焦还原NO能力下降;小粒径煤粉热解生成的煤焦较大粒径煤粒热解生成的煤焦对NO的还原率高;煤粉在一次燃烧区过量空气系数为1.0~1.2的烟气气氛中热解时,生成的煤焦对NO的还原能力无明显差别;参与反应的煤焦颗粒周围烟气气氛对煤焦还原NO的影响较大,在SR1为0.9~1.3范围内,NO还原效率呈现两头高中间低的特性,且当SR1=1.1时,NO还原率最低;在高温氧化性气氛中,随反应温度的提高,煤焦还原NO的效率增加。  相似文献   

6.
为探究煤粉预热-燃烧耦合过程中NO生成规律,借助2个串联的高温管式炉详细研究预热区温度、停留时间及空气当量比对NO生成影响,并借助Chemkin Pro利用反应动力学进行NO生成模拟与生成率(rate of production,ROP)机理分析。实验结果表明:预热温度升高,预热停留时间延长,均降低NO生成;随预热区空气当量比增加,NO生成量先减小后增加,最佳空气当量比约为0.4。煤粉预热-燃烧过程中NH_2、CH_3、HCCO、NCO和HCO为主要的NO还原基团,且CH_i对NO的还原作用显著强于含氮化合物。此外,预热区O活性基团的存在是NO还原的关键。  相似文献   

7.
采用柱塞流反应器(plug flow reactor,PFR)模型和zwietering 反应器模型对携带流反应器(entrined flow reactor,EFR)上添加H2的选择性非催化还原(selective non-catalytic reduction,SNCR)反应进行反应动力学计算分析.实验和计算结果表明:采用 Miller98 机制和Zwietering反应器模型可以较好地描述混合过程对添加H2的SNCR脱硝过程的影响.反应温度低于725℃时,化学反应速率低,反应主要受化学反应速率的控制,混合过程对NO还原反应影响很小.而温度高于725℃时,混合过程对NO还原的影响明显.反应产率分析表明,混合过程对添加H2的SNCR过程影响,主要以反应NH3+H=NH2+H2的途径使NH2活性基团减少,降低了脱硝效率.  相似文献   

8.
以麦秆、稻秆、棉花秆、玉米秆和稻壳等5种生物质原料为对象,在热解温度Tp 673~1 073 K范围内,采用快速热解和慢速热解方式制备了生物质焦,利用固定床吸附反应装置研究了焦粒粒径、热解温度、热解速率、烟气组成、吸附反应温度和生物质种类等因素对生物质焦吸附模拟烟气中SO2、NO的影响。结果表明:生物质焦对SO2的吸附效率和吸附量随着生物质焦粒径的减小而增加,但其增加趋势逐步减小。随着热解温度升高,生物质焦对SO2的吸附效率和吸附量均呈现先上升后下降的趋势。快速热解生物质焦对SO2和NO的单独吸附效率和吸附量均高于慢速热解焦。生物质焦对SO2和NO的吸附效率和吸附量均随着吸附反应温度的升高而下降。生物质焦对SO2吸附能力显著优于吸附NO的能力,模拟烟气中SO2组分对NO吸附具有显著促进作用。SO2和NO同时吸附时,WS-RP873型生物质焦对SO2的吸附量较单独吸附时减少了22.3%,但其对NO吸附量却提高了112%。在Tp 873K快速热解条件下,各种生物质焦对SO2吸附量顺序为麦秆焦>玉米秆焦>稻秆焦>稻壳焦>棉花秆焦,对NO吸附量顺序为麦秆焦>稻秆焦>玉米秆焦>稻壳焦>棉花秆焦。  相似文献   

9.
生物质分段热解气化工艺通过提升反应温度提高碳转化率、降低焦油含量。该工艺过程中利用部分生物质热解气化产气在气化炉外部的燃烧器进行燃烧产生高温烟气,为热解、气化过程提供热量。该文选取稻壳为原料,利用Aspen Plus软件,模拟稻壳与水蒸气分段热解气化工艺过程,该过程考虑了热量回收与利用以及产气的部分循环利用,通过流程模拟,分析了气化温度、水蒸气通入量对产气各组分的产量、碳转化率、产气低位热值的影响。结果表明:利用总产气量的15.4%~20.5%用于燃烧可实现分段热解气化工艺的热量自给。随着气化温度的升高,产气中H2和CO含量增加,碳转化率升高,产气低位热值在气化温度为700℃时最低,随后逐渐升高;水蒸气的通入量增加会提高H2和CO2的产量,使碳转化率升高,产气低位热值降低;在气化温度为800~1 000℃内,w(H2O)/w(B)0.15(水蒸气与生物质质量比)时,CO的产量随水蒸气的通入量增加而减少,碳转化率接近100%。  相似文献   

10.
高效液相吸收剂同时脱硫脱硝的实验研究   总被引:6,自引:1,他引:5  
采用乙二胺合钴溶液作为吸收液,在双驱动搅拌反应器内,对模拟烟气进行湿法烟气同时脱硫脱硝的实验研究。主要考察在SO2存在的条件下,SO2的浓度、温度、NO的浓度、O2的浓度和pH值等因素对NO吸收速率的影响。研究表明:气相中SO2的存在不利于NO的吸收;NO的吸收速率随乙二胺合钴浓度的增加而增大;气相中氧的存在有利于提高NO的吸收速率;NO吸收的最佳温度是50 ℃;溶液的pH值是影响NO吸收的主要因素,最佳pH值为12.9,对于高浓度的乙二胺合钴溶液,溶液的pH值对NO吸收速率的影响显著。  相似文献   

11.
水煤浆挥发分再燃对NO还原的影响   总被引:1,自引:1,他引:0  
为了解水煤浆再燃过程中均相还原反应效果的影响因素,在固定床反应器上,利用合成烟气模拟再燃区环境,对不同煤种的水煤浆,在不同的浓度、再燃区温度、氧气浓度、颗粒粒径对挥发分再燃效果的影响进行了研究。实验结果显示:挥发分的再燃效果随着水煤浆浓度的降低而升高,随着煤阶的降低而增加。另外,挥发分含量相同,含氮量高的再燃效果要好一些。再燃区反应温度的升高有益于水煤浆挥发分的释放以及再燃反应。挥发分作为再燃燃料时,再燃区烟气含氧量的影响最大,再燃效果随含氧量的增加而降低。制浆原煤粒径的大小对挥发分再燃的效果有所影响,随粒径的减少再燃效果略有增加。  相似文献   

12.
燃煤循环流化床N2O及NOx排放控制试验研究   总被引:3,自引:3,他引:0  
在一直径为Φ22mm的小型燃煤循环流化床内,通过调节给煤 的位置,分级燃烧以及注入二次风的高度,向床内注入碳氢燃烧,研究N2O和NO排放控制技术。试验表明,从料腿上部给煤能显著地降低N2O排放,但会引起NO排放的增加;可采用多点给煤,调节给煤分配来保证N2O和NO排放量均能同时满足环境要求。  相似文献   

13.
O2/CO2气氛下燃煤SO2排放特性的实验研究   总被引:2,自引:0,他引:2  
在沉降炉实验台上通过在线烟气分析仪考查了燃煤烟气的组成以及燃烧气氛、CO2浓度、温度和燃料/氧气化学当量比对SO2的排放规律。结果表明,相同操作条件下O2/CO2燃烧可获得高达80%左右的CO2浓度,但烟气中CO含量明显高于O2/N2气氛下燃烧时的情况。高浓度CO2的存在使得SO2的排放较常规燃烧方式下有所降低,并且随着气氛中CO2浓度的增加呈递减趋势,但随着燃烧温度的升高,煤粉燃尽程度的增加以及其余含硫物相向SO2的转化使得其排放浓度逐步增加。在2种气氛下,SO2的释放浓度在贫燃料区随燃料/氧气化学当量比f的增加而增加,而在f大于1.2的富燃料区随燃料/氧气化学当量比的增加而降低。  相似文献   

14.
以一台额定热负荷为7 MW的燃煤链条锅炉为试验对象,系统研究了燃煤/秸秆成型燃料层燃混烧过程。热重热流分析结果显示,燃煤/秸秆成型燃料层燃混烧可显著降低灰渣和飞灰的含碳量,从而使固体不完全燃烧热损失降低、锅炉热效率提高。炉排上混合燃料的特殊分布形式一方面改善了燃煤的着火特性,另一方面降低了通风阻力、提高了氧气在燃料层内的渗透能力;同时,有效抑制了受热面结渣和尾部烟道飞灰沉积现象。掺混比例对炉膛温度以及CO、NOx和SO2的生成量具有一定的影响,随着掺混比例的增大,炉膛温度、NOx和SO2生成量均有所降低,但CO排放有所提高。在组织燃煤/秸秆成型燃料层燃混烧时,应控制燃料层厚度在115~120mm左右,炉排转速在550r/min以下,掺混比例以23%~25%为宜,并应强化挥发分燃烧区域的气流扰动。研究成果为农业废弃物能源化利用开辟了一条新途径。  相似文献   

15.
炉内喷钙脱硫实验研究及其影响   总被引:2,自引:0,他引:2  
讨论了炉内喷钙脱硫工况条件下SO2和NOX排放的影响因素。实验表明,SO2和NOX排放与炉内温度、Ca/S、脱硫剂细度、煤种、过剩空气系数等有密切关系,另外还分析了不同煤种在不同钙硫比下对结渣、粘污、灰负荷、飞灰含碳量、比电阻等的影响。图6表6参6  相似文献   

16.
研究表明,燃料燃烧过程中不同的SO2/SO3转化率对选择性催化还原(selective catalytic reduction,简称SCR)烟气脱硝的最低运行温度影响大,温度变化幅度为10℃~15℃。对燃烧高硫煤锅炉的SCR烟气脱硝,应控制更低的SO2/SO3转化率;对燃烧低硫煤锅炉的SCR烟气脱硝,通过适当提高SO2/SO3转化率,最大催化剂用量可减少一半,烟气阻力降低一半,可大幅降低SCR烟气脱硝建设成本和运行成本。  相似文献   

17.
在考虑再燃机理中一些关键反应步骤的基础上,建立了天然气再燃还原NO的化学动力学模型,包含40种组分和165个化学基元反应。介绍了NO还原的简化反应路径。模型的计算结果表明:NO的分解与HCN、CHi和CO组分的关联性极大;再燃区过量空气系数在0.7~0.75之间、温度在1 500~1 550 K之间时还原效果最好。  相似文献   

18.
流化床内燃料燃烧时N2O形成和分解的实验研究   总被引:5,自引:4,他引:1  
阐述了流化床条件下N2O形成和分解机理,采用不同程度脱去挥发份的焦炭颗粒,研究脱挥发份的程度对N2O形成的影响,脱挥发份的温度越高,即脱挥发份的程度越高,焦炭形成N2O的量越少,这表明挥发份氮形成N2O量高于相应焦炭氮燃烧产生的N2O量。燃料燃烧过程中,NO形成比较均匀,而N2O比较复杂,燃料氮转变为NO的转化率随脱挥发份温度升高而增加,而N2O的转化率则有一临界脱挥发份温度点。燃料氮转变为N2O的转化率随燃烧温度升高而降低,NO则相反。氧化钙对N2O有较强的分解作用,固体物料对N2O的分解作用比对NO的快。N2O和NO的分解反应过程可用一级Arrhenius公式来描述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号