首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two immiscible liquids are commonly mixed by mechanically dispersing one into the other to form emulsions. Surfactants or emulsifiers confer stability. Mechanical mixing, in practice, is an energy-intensive shear flow that is ineffective when the ratio of the dispersed-phase viscosity to the continuous-phase viscosity exceeds about four. Extensional flows are not subject to this viscosity ratio limit. This superiority of extensional flow was exploited to fabricate a novel, continuous-flow, cone-shaped device with an extensional strain of eight to make fine soybean oil-in-water emulsions. A spherical insert having a wall clearance of 25 μm was an effective design factor. Starting with ‘coarse’ 50 wt.% oil emulsions, two stretching episodes were needed for size reduction. The temperature rise was negligible, and the results were independent of the emulsifier type employed. Increasing flow rate and stretching episodes, reducing wall clearance, enhancing emulsifier concentration, and multiple passes through the device gave progressively smaller drops; the volume-averaged diameter became less than 2 μm, and the number-averaged diameter reached 0.5 μm, narrowing the size distribution. The emulsions that formed had a high viscosity and were stable. The performance of a scaled-up device was compared with other mixers. At equivalent energy density and 50 wt.% oil, drop sizes were similar for a valve homogenizer but larger for a rotor-stator mixer. At 80 wt.% oil, the rotor stator-mixer again required more energy for the same drop size, but emulsions prepared with the valve homogenizer broke. The findings of this study can help to design industrial-scale energy-efficient extensional-flow dominant devices for the formation of food emulsions.  相似文献   

2.
This work describes the formulation and evaluation of concentrated, heavy oil-in-water emulsions stabilized by mixtures of ethoxylated surfactants and normal alcohols. The rheology, stability and droplet size of these emulsions were investigated as functions of the emulsification process parameters. The parameters investigated for this study include emulsifier agent composition, presence of additives, pH and salinity of the continuous aqueous phase, emulsification temperature, oil content and emulsion aging. The produced emulsions had viscosities ranging from 30 to 150 mPa s and represent a 30-fold reduction of the crude oil viscosity. Sauter mean diameters of the droplets ranged from 10 to 50 μm. The emulsions were produced by mixing the oil with an aqueous solution containing medium normal-chain alcohols and small quantities of a mixture of ethoxylated nonylphenol and ethoxylated amine surfactants. The presence of these alcohols led to a sharp decrease in the droplet size of the emulsion. This size decrease had a direct impact on the emulsions’ stability and apparent viscosity. The rheological parameters of the aged emulsions were also essentially constant over a 42-day period.  相似文献   

3.
Liposomes have been used widely as carriers for active ingredients in cosmetics because of their ability to encapsulate both hydrophilic and hydrophobic compounds. In this work, fatty acid liposomes were prepared and introduced into olive oil-in-water emulsions stabilized by C14–C18 sucrose ester mixtures at pH 8.5. Light microscopy images of the emulsions showed evidence of the coexistence of oleic acid liposomes with the emulsions. As the alkyl chain length of the sucrose ester increased, the average droplet size decreased, while the zeta potential became more negative. Further decrease in droplet size was observed when borate buffer was added to the aqueous phase. The free fatty acids in the sucrose esters and olive oil are neutralized in borate buffer; consequently, fatty acid salts were produced and served as co-surfactants. The synergistic stabilization of emulsions by the mixture of sucrose esters and fatty acid salt resulted in higher stability, smaller droplet size, and lower polydispersity. The drastic increase in negative zeta potential was possibly due to the presence of free fatty acid salts in the emulsion systems. The flow curves at steady rate displayed five distinctive regions. The polydispersity of droplets enhanced the shear thickening effect at low shear rates and shear-banding effect at middle shear rates. Formation of fatty acid salts as co-surfactants caused the viscosities of the emulsions to increase by an order of magnitude. The presence of oleic acid liposome significantly reduced the viscosities of the emulsion by half an order of magnitude; this decreased viscosity helped enhance better spreadability.  相似文献   

4.
The aim of this study is to investigate the physical properties of aqueous solutions of pectin (PA) containing sunflower wax (SFW), which are used as a basis for producing edible films. The stability and the rheological and microstructural characteristics of SFW/PA mixtures were evaluated. SFW/PA mixtures formed oil-in-water emulsions that were milky and opaque in appearance and were stable towards phase separation. Polarized micrographs revealed the presence of wax crystals, whose size decreased as pectin concentration increased. The rheological behavior of the aqueous solutions of pectin containing different amounts of SFW were best described by the generalized power law model of Herschel–Bulkley (H–B), which gave the best fit in all the range of shear rate values. Apparent viscosities and yield stress were determined using this model, and both properties increased with increasing pectin content. The apparent viscosity values were between 0.0095 and 0.1031 Pa s. SFW addition resulted in a small decrease in viscosity for emulsions formulated with 1 and 2 % PA, but the opposite effect was observed for emulsions formulated with 3 % PA. In addition, shear stress values were higher for emulsions with higher PA content, but were not affected by SFW addition.  相似文献   

5.
王少华  张淑芬 《精细化工》2019,36(10):2046-2051
通过硅氧烷单体在碱性条件下的水解-聚合反应,制备出了单分散乳液,研究了乳化剂HLB、反应时间、乳化剂用量、单体用量等因素对乳液的影响。然后以该乳液为模板、有机硅为壳层进行包覆,得到了中空微球。采用纳米粒度及Zeta电位分析仪、SEM、TEM、EDS、FTIR对乳液及中空微球进行表征。结果表明,在室温条件下,反应时间为6h时能够制备出单分散性较好的乳液,通过改变乳化剂用量、单体用量,能够实现对乳液粒径的调控,调控范围346~472 nm。以该乳液为模板进行缓慢包覆,当乳化剂质量分数低于0.003%时,能够得到形貌规整的单分散中空微球,中空微球的主要成分为有机硅。与硬模板法相比,该模板通过乙醇洗涤即可除去,制备过程较为简单。  相似文献   

6.
Silverson high shear in-line rotor–stator mixers are widely applied in industry for the manufacture of emulsion-based products but the current understanding of droplet breakage and coalescence in these devices is limited. The aim of this paper is to increase the understanding of droplet break-up mechanisms and to identify appropriate literature correlations for in-line rotor–stator mixers. Silicone oils with viscosities ranging from 9.4 to 969 mPa s were emulsified with surfactant in an in-line Silverson at rotor speeds up to 11,000 rpm and flow rates up to 5 tonnes/h. The effect of rotor speed, flow rate, dispersed phase fraction up to 50 wt%, inlet drop size and viscosity ratio on droplet size was investigated. It was found that rotor speed and dispersed phase viscosity have a significant effect on the droplet size, while flow rate, inlet droplet size, viscosity ratio and dispersed phase volume have a lesser effect. The results indicate that low viscosity droplets are broken by turbulent inertial stresses, while droplets smaller than the Kolmogorov length scale are broken by a combination of inertial and viscous stresses. It also appears that the weak dependence of drop size on flow rate enables the energy efficiency of an in-line high shear Silverson to be significantly improved by operating at as high a flow rate as possible.  相似文献   

7.
Nanoemulsions of silicone oil and pine oil using a binary surfactant system were prepared. Silicone oil and pine oil were used to achieve softness and mosquito repellency and antibacterial activity respectively when the nanoemulsion was applied on the fabric. A silicone surfactant (AG-pt) and a hydrocarbon surfactant (TDA-6) were used in different proportions to obtain stable nanoemulsions at the lowest possible droplet size. The various emulsification process variables such as ratio of hydrocarbon to silicone surfactant, surfactant concentration, ratio of silicone oil to pine oil, oil weight fraction and sonication time have been studied. The optimal variables include the ratio of hydrocarbon to silicone surfactant of 80:20, surfactant concentration of 8%, ratio of silicone oil to pine oil of 80:20, oil weight fraction of 20% and 15 min of sonication time at 40% of the applied power. Nanoemulsions were found to be very stable with emulsion droplet size around 41 nm. In order to compare different emulsification techniques, emulsions were also prepared using the conventional method. Emulsions analyzed using SEM showed spherical droplets ranging from 40 to 120 nm. Atomic force microscopy was used to evaluate the bounciness, fluffiness and softness of fabric. From this study, it was found that stable nanoemulsion with a lowest possible droplet size of silicone and pine oil could be prepared by ultrasonic emulsification technique in order to deliver multiple properties when applied to fabric.  相似文献   

8.
蒋小华  王玮  宫敬 《化工学报》2008,59(3):721-727
以渤海SZ36-1稠油、矿化水为工质配制了2组不同液滴直径的W/O型乳状液,研究了温度、含水率、剪切率和液滴直径对乳状液黏度的影响。结果表明,温度对乳状液表观黏度的影响非常明显,而对相对黏度的影响却较小;同时含水率、剪切率和液滴直径也是影响乳状液黏度的重要因素,低含水率下,剪切率、液滴直径对黏度的影响不明显,而当含水率较高时,剪切率、液滴直径的影响非常突出,乳状液呈现出强烈的剪切稀释特性。利用国内外现有的一些黏度模型对实验获得的黏度数据进行了预测分析,发现Brinkman(1952)模型具有较好的预测精度。  相似文献   

9.
In this paper, an investigation was carried out to study the effect of water fraction and flow conditions on the flow characteristics of surfactant stabilized water-in-oil emulsion. Pressure drop measurements were conducted in 2.54-cm and 1.27-cm horizontal pipes. The influence of water fraction and the flow conditions on emulsion stability, type, conductivity, droplet size distribution, viscosity and pressure drop were reported. The results showed a significant increase in the emulsion stability, viscosity and pressure drop with increasing water fraction up to 70%. In addition, shear thinning behavior was observed for the emulsions especially at high water fractions. Furthermore, pressure drop measurements of high concentrated emulsions showed pipe diameter dependency especially at high Reynolds (Re) numbers. Moreover, drag reduction was observed with decreasing water fraction. The viscosity of surfactant-stabilized water-in-oil emulsions was modeled with a modified fluidity-additivity model.  相似文献   

10.
吴俊  景文珩  邢卫红  徐南平 《化工学报》2005,56(7):1284-1287
膜乳化法是靠膜两侧的压差使分散相通过微孔膜,以小液滴的形式分散在连续相中而形成乳状液的方法.与转一定体系、高压均化等传统制乳方法相比,膜乳化法所制得的乳液具有液滴尺寸均一、节能、剪应力小等特点,可应用于食品、医药、聚合物工业等领域.过去的十几年中,尽管在膜乳化方面进行了大量的工作,过程参数对乳滴尺寸的影响并未完全研究清楚.甚至在一些研究中,仅仅把平均乳滴直径作为分布参数.  相似文献   

11.
This paper reports an experimental study on the effect of oil viscosity on the rheology of oil-in-water (o/w) emulsions with added solids. Four oils having a viscosity range of 0.0024 to 306 Pa . s were used. The size ratio of the solids to oil droplets was varied from 2 to 16. The addition of smaller size solids to the emulsions yielded a higher viscosity than that of larger solids at the same solids volume fraction. However, when the solids were sufficiently large such that the emulsions behaved as a continuous phase towards the solids, the viscosity of the emulsion-solids mixtures tended to be independent of the solids size. The critical size ratio of the solids to oil droplets, above which the emulsions behaved as a continuous phase towards the solids, increased with the oil viscosity. The critical size ratio varied between 3 and 10.  相似文献   

12.
The need to utilize viscous crude oils will increase in the next decade. One means to facilitate pumping of heavy crudes in pipelines is to transport them as concentrated oil-in-water emulsions. Stable emulsions could be prepared by alkali treatment with four of seven viscous crudes studied. Surfactants are formed by reaction of natural acids in the crude with alkali. At crude volume fractions of 60%, emulsion apparent viscosity was lowered as much as 10,000 times.

Viscosities of crude emulsions formed by alkali treatment varied with the nature of the crude and with the ratio of base added to the TAN of the crude. Emulsion viscosities and particle diameters reach extrema close to the equivalence point.

The addition of tall oil enhanced the emulsification ability of some of the crudes with alkali treatment, but one crude required non-ionic surfactant to form an emulsion.  相似文献   

13.
The objective of this study was to investigate the effect of oil phase concentration, at different emulsification conditions concerning homogenization time and emulsifier content, on droplet size distribution and stability of corn oil‐in‐water emulsions. Emulsions were prepared with 3, 5, 10, and 20% w/w triethanolamine oleate (calculated on oil amount), 0.53% w/w carboxymethylcellulose (calculated on water amount), and 5, 10, 20, 30, or 40% w/w oil, and homogenized 5, 10, 20, and 60 min. It was found that increase in oil phase concentration led to decrease in specific surface area and increase in polydispersity of emulsion at lower emulsifier concentration and less intense homogenization. At emulsifier concentrations ≤10% and homogenization time ranges of 20–60 min the non‐monotonous variation in droplet size parameters with oil concentration was observed, as a result of the interaction between triethanolamine oleate and carboxymethylcellulose, which were confirmed by viscosity measurements. However, at emulsifier concentration of 20% an increase in specific surface area and decrease in polydispersity with the increase in oil concentration occurred due to an increase in equilibrium concentration of emulsifier in the continuous phase. Further, influence of oil concentration on emulsion creaming stability was found to be independent on emulsifier concentration and homogenization time. Therefore, a decrease in creaming with increase in oil concentration was observed in all the examined triethanolamine oleate (TEAO) concentration and homogenization time ranges. Practical applications: Emulsions are colloidal systems which can be encountered in different industrial sectors, such as food, pharmaceutical, cosmetics, oil industry, etc. Determination of the droplet size of emulsion is probably the most important way of their characterization, since it influences the properties of emulsion such as rheology, texture, shelf life stability, appearance, taste, etc. The size of the droplets depends on a wide range of parameters. One of them is certainly the concentration of the oil phase. However, since the impact of one parameter is often influenced with the intensity of the other variable involved in the emulsion generation, the aim of the present work was to examine the effect of corn oil concentration on droplet size parameters and stability of oil‐in‐water emulsions at different emulsification conditions. Therefore a step toward creation of emulsions with desired final properties was made.  相似文献   

14.
Experimental work was carried out to investigate the rheological properties of bitumen in water emulsions containing solids of different shape and size. The bitumen volumetric concentration was varied up to 60%, solids free basis, and the solids volume fraction (total volume basis) was varied up to 0.2. Irregular-shaped silica sand (average diameter: 9 and 33 μm) and smooth spherical glass beads (average diameter: 27 and 44 μm) were used as the added solids. In the low shear stress range, shear thinning behavior was observed for bitumen in water emulsions. At high shear stress, the viscosity of the emulsions became fairly independent of the shear stress. The addition of solids to the bitumen emulsions increased the mixture viscosity. The addition of irregular-shaped silica sand gave a higher viscosity than a similar addition of the spherical glass beads. The viscosity of the emulsion/solids mixtures was influenced by the solids size as well; the smaller size particles gave a higher viscosity. The addition of solids to the bitumen emulsions also induced shear thickening (dilatancy) behavior at high solids volume fraction. The degree of the shear thickening increased with the oil concentration.  相似文献   

15.
The effects of the emulsification method [either mechanical agitation or ultrasonication (US)] and proportion of gum arabic (GA)/maltodextrin (MD) on the characteristics of feed emulsions and microparticles containing Indian clove essential oil produced by spray drying were investigated. Emulsions produced using US were more stable with smaller droplets, lower polydispersity indexes, and higher viscosities. Increasing the proportion of GA resulted in an increased particle size. Powders produced by US exhibited a higher moisture content and hygroscopicity. The US improved oil retention, except for microparticles comprised GA. Powders with a higher proportion of MD exhibited smooth surfaces.  相似文献   

16.
In the present study, a series of as-synthesized palm-based nonionic surfactants with various hydrophile–lipophile balance values were successfully synthesized. The critical micelle concentration and the Gibbs energy of the surfactants were determined and discussed. For the first time, the surfactants were used to stabilize three-component olein oil-in-water high internal phase emulsions, with an oil volume fraction of 0.85, and which were easily prepared by one-pot homogenization. Proof of high stability was confirmed by the satisfactory rheological profiles and further enhanced by a three-month storage exercise at an elevated temperature which showed no significant physical and rheological changes. These results suggest that low concentration of the surfactants efficiently stabilized the emulsions with high content of oil. Based on the optical micrograph observation, an average droplet size of less than 10 μm increased with increasing ethylene oxide chain length and temperature. The varying degree of viscosity resulted from the various ethylene oxide chain lengths of the surfactants. The hydration efficacy of the emulsions was examined in vivo using a corneometer. The impressive hydration efficacy of olein oil suggests that it could well be a potential moisturizing lipid which might interest dermatologists.  相似文献   

17.
This work investigates the effect of transport properties in sheared granular flows with adding different silicone oils. We performed a series of experiments in a shear cell device using 2-mm soda lime beads as the granular materials by adding little amount of different silicone oils. The viscosity of silicone oils added was changed in different tests. By particle tracking method, the velocities, the velocity fluctuations and the self-diffusion coefficients were measured and analyzed. It was found that for the granular system with adding the more viscous silicone oil, the system became less active due to the greater shear force and cohesive force, which resulted in the decrease of velocity fluctuations and diffusions. Three bi-directional stress gages were installed to the upper wall to measure the normal and shear stresses of the granular materials along the upper wall. Thus, the effective viscosities of the wet granular material systems could be evaluated. The dimensionless normal and shear stresses, and the effective viscosity in the wet sheared granular flow were found to decrease with the increase of the viscosity of the added silicone oil. The influence of the viscosity of added fluid on these transport properties of wet granular systems will be discussed.  相似文献   

18.
A new simple and low cost method of quantification of trace amounts of silicon (Si) in silicone oils has been developed by combining the silicone emulsion and inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. Silicone oils that contained phenyl groups in the viscosity range from 20 to 1000 mPa.s formed stable oil in water emulsions in the presence of Tween 80 surfactant and methylisobutylketone (MIBK). The Si in the emulsions was further quantified by ICP-OES. The calibration was performed using spiked inorganic silicon standard in the emulsions and the method was verified by the standard reference material SRM1066a. The precision and accuracy of the emulsion method applied to three phenyl containing silicone oils and polydimethylsiloxane (PDMS) with low viscosity (10 cSt) were good and acceptable (RSD < 10 % and the error range <10 %) with the limits of detection (LOD) in the emulsion as 0.5 ppm Si. Compared to the Si determination by the direct organic solvent ICP-OES, this method is much more convenient, where a regular ICP-OES instrument can be directly used for the quantification of Si in the silicone oils obtained via extraction by organic solvents from plastics and other samples.  相似文献   

19.
The theoretical models for the viscosity of concentrated emulsions are reviewed. All models predict that the relative viscosity of an emulsion, at low capillary numbers, is a function of dispersed-phase volume fraction and viscosity ratio (ratio of dispersed-phase viscosity to continuous-phase viscosity). The predicted values of relative viscosity from different theoretical models are compared with a large amount of experimental data. The cell model of Yaron and Gal-Or [Rheol. Acta 11 (1972) 241] predicts the relative viscosities of emulsions reasonably well over a wide range of dispersed-phase volume fraction and viscosity ratio. The cell model of Choi and Schowalter [Phys. Fluids 18 (1975) 420] overpredicts the relative viscosities, especially at high values of dispersed-phase volume fraction. The Phan-Thien and Pham model [J. Non-Newtonian Fluid Mech. 72 (1997) 305] underpredicts the relative viscosities of emulsions at high values of dispersed-phase volume fraction.  相似文献   

20.
The influence of petroleum sulphonate (TRS) on interfacial properties and stability of the emulsions formed by formation water and asphaltene, resin and crude model oils from Gudong crude oil was investigated by measurement of interfacial shear viscosity, interfacial tension (IFT) and emulsion stability. With increasing petroleum sulphonate concentration, IFT between the formation water and the asphaltene, resin and crude model oils decreases significantly. The interfacial shear viscosity and emulsion stability of asphaltene and crude model oil system increase for the petroleum sulphonate concentration in the range 0.1% to 0.3%, and decrease slightly when the concentration of the surfactant is 0.5%. There exists a close correlation between the interfacial shear viscosity and the stability of the emulsions formed by asphaltene or crude model oils and petroleum sulphonate solution. The stability of the emulsions is determined by the strength of the interfacial film formed of petroleum sulphonate molecules and the natural interfacial active components in the asphaltene fraction and the crude oil. The asphaltene in the crude oil plays a major role in determining the interfacial properties and the stability of the emulsions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号