首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fe-Cr-C-B-Nb堆焊合金的显微组织和耐磨性   总被引:2,自引:2,他引:0       下载免费PDF全文
采用明弧自保护法制备Fe-Cr-C-B-Nb系耐磨堆焊合金,借助光学显微镜(OM)、扫描电镜(SEM)和X射线衍射(XRD)等手段,分析堆焊层中的物相组成,探究熔池中硬质相析出顺序,研究B和Nb元素含量对其显微组织和耐磨性影响. 结果表明,制备的堆焊合金显微组织为马氏体+残余奥氏体+ M23(C,B)6+NbC,NbC先于M23(C,B)6生成. 当堆焊层中B元素含量为0.21%,Nb元素含量为1.44%时,可以使堆焊合金有较高的硬度和耐磨性. 洛氏硬度可达69 HRC±1.5 HRC,磨损量为0.037 6 g. 过量的B元素不利于NbC析出,而使Nb元素固溶强化硼化物和基体. 耐磨性试验结果表明,M23(C,B)6和NbC两种硬质相显著改善了Fe-Cr-C-B-Nb系堆焊合金的耐磨性.  相似文献   

2.
Cr对Fe-Cr-B-C系堆焊合金热处理后的组织和磨损性能的影响   总被引:1,自引:0,他引:1  
观察采用药芯焊丝堆焊方法在Q235钢基体上制备了含Cr含量分别为12%、14%、16%和18%的Fe-Cr-B-C系耐磨合金。对堆焊合金进行600℃热处理,研究了不同Cr含量对焊态和热处理后堆焊合金的显微组织和磨粒耐磨性能的影响。结果表明,堆焊合金硬质相主要为(Fe,Cr)23(B,C)6,焊态基体组织为马氏体和残留奥氏体,热处理后基体组织为回火索氏体;当Cr含量达到14%,硬质相(Fe,Cr)23(B,C)6高温下稳定;Cr含量对堆焊合金热处理后磨损性能有很大影响,含12%Cr堆焊合金的相对耐磨性由焊态的10.65下降到2.08,耐磨性只有焊态的19.5%,而16%Cr的堆焊合金热处理后耐磨性为9.08,具有良好的耐磨性能。  相似文献   

3.
Hardox400耐磨板是集高强度、韧性,良好的可加工性以及高耐磨性于一身的国外优质进口钢板。从耐磨板的堆焊修复着手,通过对3个不同合金体系的4组药芯焊丝进行堆焊试验,对比观察各组堆焊焊缝成形效果和微观金相组织,并对堆焊层进行宏观洛氏硬度测试,最后优选出了一组最适合于Hardox400耐磨板修复用FeB-C-Nb-Ni系堆焊药芯焊丝,并对其进行磨粒磨损试验考察其耐磨性能。结果表明:该堆焊层硬度值为HRC60.1,堆焊焊缝成形美观、饱满,焊缝中形成的低碳马氏体为耐磨骨架,细小NbC,Fe●B硬质相弥散分布的组织能够与基体组织很好的熔合。堆焊层合金相对耐磨性为基体材料的5.2倍,具有比Hardox400耐磨板优异的耐磨性能。  相似文献   

4.
采用表面堆焊工艺制备Fe-Cr-C、Fe-Cr-C-NbC两组堆焊试样,采用感应钎焊工艺制备YG8硬质合金钎焊试样,对试样的组织和耐磨性能进行了研究。结果表明,亚共晶Fe-Cr-C堆焊合金的显微组织主要为马氏体+共晶碳化物,其耐磨性较40Cr淬火钢有一定提升。添加3%~5%的NbC后,堆焊合金层中形成大量弥散分布的块状NbC硬质相,阻碍了磨粒对基体的切削作用,其耐磨性是Fe-Cr-C堆焊合金层的3.3倍。YG8硬质合金硬度为1280HV,相对耐磨性为Fe-Cr-C堆焊合金的29.8倍,表现出极高的耐磨性。  相似文献   

5.
铬含量对Fe-Cr-B堆焊合金显微组织及耐磨性的影响   总被引:1,自引:1,他引:0  
目的在Fe-x Cr-3.5B-0.1C药芯焊丝中加入不同含量的铬,了解铬含量对堆焊合金硼化物形貌以及耐磨性能的影响。方法采用CO_2气体保护堆焊的方法在Q235钢基板上制备Fe-Cr-B系耐磨合金,利用光学显微镜、XRD、SEM等方法观察堆焊合金层的显微组织结构,以及湿砂橡胶轮磨粒磨损试验机对堆焊层进行磨粒磨损试验。结果堆焊合金层主要由铁素体枝晶、马氏体、珠光体和硼化物组成,硼化物随着Cr含量的增加发生Fe_2B到M_2B(M=Fe,Cr)的转变,它主要分布在金属基体的连续网状和鱼骨状结构中。凝固过程中,当Cr质量分数大于9%时,首先形成初生M_2B颗粒,随后形成共晶的M_2B和BCC结构的Fe基固溶体,这种共晶的微观结构主要由基体和长条状的M_2B硼化物组成。从Cr与(Fe,Cr)的原子数分数比值可以看出,硼化物发生从Fe_2B→(Fe,Cr)_2B→(Cr,Fe)_2B的转变。铬含量对Fe-Cr-B系耐磨堆焊合金的组织、硼化物形貌有较大影响。由于硼化物空间结构的变化,硼化物的显微硬度会随着铬原子进入Fe_2B而逐渐提高。结论随Cr含量的增加,及共晶硼化物硬质相的析出,堆焊合金的硬度和耐磨性呈现持续提高的趋势。当Cr含量为20%时,合金中生成的长条状M_2B相作为耐磨骨架无序的分布且镶嵌于基体中,合金耐磨料的磨损性能比Cr含量为9%时的提高了约7.4倍。  相似文献   

6.
采用药芯焊丝埋弧堆焊方法制备含0.8%~1.2%C,7%~8%Cr,0.8%~1.0%Ti,0~1.2%B(质量分数)的Fe-Cr-Ti-B堆焊合金,借助光学显微镜、X射线衍射等分析手段,研究其显微组织及相组成,结果表明,该堆焊合金的基体组织由大量铁素体+少量马氏体组成,而硬质相则由(Fe,Cr)3(C,B)+TiB2+TiC+(Fe,Cr)2B+(Fe,Cr)B等构成。另外,考察了碳化硼(B4C)含量对Fe-Cr-Ti-B堆焊合金硬度和耐磨性的影响,试验结果表明,含TiB2相的Fe-Cr-Ti-B堆焊合金具有优良的耐磨性;随药芯焊丝中B4C含量的增加,堆焊合金硬度及相对耐磨性先升高后降低,当其质量分数为5%时,达到最佳值。  相似文献   

7.
采用药芯焊丝气保焊堆焊方法制备了0.8%~1.6%C(质量分数)的亚共晶Fe-Cr-B-C系耐磨合金,采用光学显微镜,扫描电镜和X射线衍射仪对堆焊合金微观组织和物相进行了分析。结果表明:堆焊合金显微组织是亚共晶组织,由初生γ-Fe枝晶和共晶组织(硼碳化物+共晶基体)组成;元素C能显著增加共晶组织数量,增加共晶组织上共晶基体的尺寸;堆焊合金的耐磨性能主要受作为耐磨骨架的共晶组织数量和形态共同影响,0.8%C堆焊合金的共晶组织数量较少,相对磨损性能仅为9.1;当C含量增加到1.2%时,共晶组织数量明显增加,堆焊合金的磨损性能显著上升至17.2;继续增加C到1.6%时,共晶组织数量最多,但是由于共晶基体尺寸偏大,堆焊合金的磨损性能大幅降低至11.4。  相似文献   

8.
NbC增强Fe-Cr-C耐磨堆焊合金组织与磨粒磨损性能   总被引:1,自引:1,他引:1       下载免费PDF全文
以H08A为焊芯,在Fe-Cr-C耐磨合金焊条药皮中加入NbC,对堆焊层组织及NbC对堆焊层硬度和耐磨性的影响进行了研究.结果表明,NbC增强Fe-Cr-C耐磨合金的宏观硬度和耐磨性都高于Fe-Cr-C合金,宏观硬度达到61.6 HRC,比Fe-Cr-C耐磨合金提高9.6%;相对耐磨性提高60%.NbC增强Fe-Cr-C耐磨合金中NbC硬质相断面呈不规则形状,分布于M7C3之间,或镶嵌在M7C3中,以菱形或多边形居多,NbC分布不均匀,有局部聚集的区域.与Fe-Cr-C耐磨合金的共晶碳化物比较,Fe-Cr-C-NbC合金的共晶碳化物要粗大,共晶碳化物的间距也较大.  相似文献   

9.
对新研发的鸣锐160GH石油钻杆接头耐磨带堆焊药芯焊丝进行了金相组织分析、硬度及耐磨性试验,并进行了工程实际应用。结果表明:耐磨带堆焊层显微组织中存在细小的NbC硬质相并呈弥散分布,该NbC硬质相提高了耐磨带的硬度和耐磨性能,与国外同类进口产品相比,鸣锐160GH石油钻杆耐磨带在磨损率、抗裂性方面都较优。  相似文献   

10.
针对Nb-Ni-Ti-B强化药芯焊丝堆焊金属进行研究,采用XRD和SEM分析了样品的相结构和显微结构;研究发现焊丝熔敷金属中的Fe2B能使熔敷金属堆焊层更加稳固,具有良好的抗剥离性能,Fe2B的硬度高、耐磨性好、分布均匀,镶嵌在熔敷金属的基体中有着骨架的作用,使该合金具有了良好的耐磨性;堆焊金属中的TiC为NbC提供了凝结核,形成NbC+TiC复合相,在提高耐磨性的同时有利于促进NbC弥散分布。NbC+TiC复合相弥散分布在熔敷金属中,部分NbC+TiC复合相嵌于Fe2B组织中有利于固化Fe2B组织。通过Nb-Ni-Ti-B强化药芯焊丝堆焊金属与5C-27Cr型高碳高铬合金焊丝熔敷金属磨损试验比较,Nb-Ni-Ti-B强化堆焊金属相对5C-27Cr型高碳高铬合金的耐磨性为2.08。  相似文献   

11.
Fe-Cr-Ti-C系药芯焊丝熔覆层中硬质相生长模式   总被引:1,自引:1,他引:0       下载免费PDF全文
将Fe-Cr-Ti-C系耐磨药芯焊丝采用钨极氩弧焊堆焊到低碳钢表面,分析熔覆层中的物相组成,研究熔覆层中硬质相的形态分布和生长机理,探究熔覆层的耐磨性及表面硬度等力学性能变化的原因. 结果表明,药芯堆焊焊丝中的合金元素的过渡系数很高,可原位合成(Fe,Cr)7C3和TiC硬质相,TiC优先依附外来界面行核、长大,共晶(Fe,Cr)7C3硬质相则依附于初生马氏体相和TiC形核生长,点状TiC硬质相(少数为条状和十字状)弥散分布于马氏体、残余奥氏体的基体中,与网状的(Fe,Cr)7C3耐磨框架组成复合硬质相,提高熔覆层的耐磨性.  相似文献   

12.
《焊接》2015,(8)
从硬度、金相、耐磨性能等方面对比分析了鸣锐150GH和美国某100XT型两种钻杆耐磨带焊丝,结果表明:由于耐磨带堆焊层金相组织中存在微米级别的碳化铌硬质相(NbC),弥散分布的碳化铌硬质相提高了耐磨带的硬度和耐磨性能。同时,实际应用表明鸣锐150GH的洛氏硬度和耐磨性能优于美国某100XT型耐磨带焊丝。  相似文献   

13.
《铸造》2017,(10)
通过中频感应炉熔炼、快冷,制备出共晶Fe-Cr-B-C合金。采用OM、SEM(附带EDS)、XRD观察了共晶Fe-Cr-B-C合金的组织,并检测其硬度和冲击韧性。结果表明:铸态Fe-Cr-B-C合金的宏观硬度为HRC68,冲击韧性达到13.6 J/cm~2;组织由马氏体+残余奥氏体基体和沿晶界连续网状分布的(Fe,Cr)_2(B,C)+(Fe,Cr)_(23)(B,C)_6硬质相组成。经960℃×2 h退火后,合金的宏观硬度降低为HRC46,冲击韧性减少到3.4 J/cm~2;基体组织转变为铁素体和粒状渗碳体,硬质相(Fe,Cr)_2(B,C)和(Fe,Cr)_(23)(B,C)_6少量溶解,局部区域出现断网,生成新相(Fe,Cr)_3(B,C)。  相似文献   

14.
为解决水泥、电力、冶金、矿山等行业立磨、辊压机、耐磨板等耐磨部件的耐磨损问题,对铁基硬面堆焊药芯焊丝进行了研究。通过调整药芯焊丝中碳、铬含量以及一种或多种强化合金元素种类与含量,制备了碳含量4%~6%,铬含量20%~35%,其他合金元素含量小于10%的铁基硬面堆焊合金,分析了堆焊合金显微组织和硬度,对合金中硬质碳化物面积百分比、碳化物尺寸进行了定量分析,对堆焊合金的耐磨性进行了试验。结果表明:堆焊合金的主要组织为初生碳化物(Cr,Fe)7C3、共晶碳化物(Cr,Fe)7C3、残余奥氏体及少量其他碳化物;随合金中初生碳化物的增加,合金硬度和耐磨性增加,但碳化物过多时,硬度继续增加,耐磨性反而下降;适量合金元素Nb、Mo等的加入,在合金中以固溶体和细小弥散分布的硬质相的形式存在,有利于提高合金的耐磨性。通过配方设计和应用试验,成功开发出6种硬面堆焊用药芯焊丝。  相似文献   

15.
堆焊     
20091216Fe-Cr-C系药芯焊丝耐磨堆焊层的组织和性能/肖逸锋…//热加工工艺.-2008,37(11):1~3在Fe-Cr-C系药芯焊丝药芯中添加多种强碳化物形成元素,研究了堆敷金属的显微组织、耐磨性和抗氧化性。结果表明,堆焊层金属中大量呈针状和片状的细小碳化物均匀分布在共晶组织和马氏体基体上,改善堆焊金属的韧性,提高了抗裂性;焊缝金属的硬度为61.7HRC,耐磨性好,其相对耐磨性是市售某药芯焊丝堆焊层金属的3.75倍;堆焊层金属高温稳定性好,抗氧化能力强;焊丝适用于高温低应力磨料磨损环境。图3表4参520091217Fe-Cr-V耐磨堆焊合金/龚建勋…//焊接学报.-2008,29(7):73~76制备了用于埋弧焊药芯焊丝的Fe-Cr-V堆焊合金,其成份(质量分数,%)为C0.9~1.5,Cr13~15,V1.0~2.0。借助光学显微镜、扫描电镜和X射线衍射等手段,研究了其显微组织,并考察V和B4C含量对该堆焊合金性能的影响。Fe-Cr-V堆焊合金的显微组织由铁素体+马氏体+(Cr,Fe)23C6等碳化物组成。电子能谱微区分析显示Cr,V元素晶界含量显著高于晶内,随WC加入量提高,晶界与晶内含量差...  相似文献   

16.
堆焊     
20091216Fe-Cr-C系药芯焊丝耐磨堆焊层的组织和性能/肖逸锋…//热加工工艺.-2008,37(11):1~3在Fe-Cr-C系药芯焊丝药芯中添加多种强碳化物形成元素,研究了堆敷金属的显微组织、耐磨性和抗氧化性。结果表明,堆焊层金属中大量呈针状和片状的细小碳化物均匀分布在共晶组织和马氏体基体上,改善堆焊金属的韧性,提高了抗裂性;焊缝金属的硬度为61.7HRC,耐磨性好,其相对耐磨性是市售某药芯焊丝堆焊层金属的3.75倍;堆焊层金属高温稳定性好,抗氧化能力强;焊丝适用于高温低应力磨料磨损环境。图3表4参520091217Fe-Cr-V耐磨堆焊合金/龚建勋…//焊接学报.-2008,29(7):73~76制备了用于埋弧焊药芯焊丝的Fe-Cr-V堆焊合金,其成份(质量分数,%)为C0.9~1.5,Cr13~15,V1.0~2.0。借助光学显微镜、扫描电镜和X射线衍射等手段,研究了其显微组织,并考察V和B4C含量对该堆焊合金性能的影响。Fe-Cr-V堆焊合金的显微组织由铁素体+马氏体+(Cr,Fe)23C6等碳化物组成。电子能谱微区分析显示Cr,V元素晶界含量显著高于晶内,随WC加入量提高,晶界与晶内含量差...  相似文献   

17.
为了抑制高硼铁基耐磨堆焊合金硬质相Fe2B内部的显微裂纹,改善堆焊合金层的耐磨性能,向Fe-B-C系耐磨堆焊合金中添加不同含量的Cr,研究Cr含量对堆焊层组织形貌、物相组成及硬度的影响.试验采用添加不同含量微碳铬铁粉的方式,利用等离子粉末堆焊的工艺,在Q235钢板上制备具有不同Cr含量的高硼铁基堆焊合金,通过光学显微镜...  相似文献   

18.
采用H08A焊芯,通过药皮向堆焊金属过渡合金元素,形成多种硬质相,达到多元复合强化、提高耐磨性的目的.采用光谱仪、金相显微镜、扫描电镜和EDAX能谱分析了堆焊金属的成分和组织结构.研究结果表明,优化焊条的堆焊层组织为混合型马氏体和少量残余奥氏体+弥散分布的一次NbC,低碳马氏体和高碳马氏体数量相当.碳化物硬质点呈颗粒状弥散分布,这使焊层达到较高的硬度,而基体有较高塑韧性,实现抗裂性增强.  相似文献   

19.
采用埋弧堆焊技术对药芯焊丝VC-90进行四层堆焊,借助金相显微镜、扫描电子显微镜、EDS能谱仪、X射线衍射仪、维氏硬度计及磨损试验机等对堆焊合金微观组织及耐磨性能进行测试和分析。结果表明,堆焊合金的基体组织为马氏体和残余奥氏体,基体上分布着初生碳化物和共晶碳化物,碳化物的类型均为M7C3型。初生碳化物主要呈不完整的六边形,中间有空洞。堆焊金属的相结构为C0.055Fe1.945+(Fe,Cr)7C3+CFe15.1。堆焊合金层的耐磨性是Q235钢的27.20倍,抵抗低应力的磨料磨损效果良好。  相似文献   

20.
为了探讨合金元素Cr,C对高硼铁基堆焊合金组织结构的影响,采用气体保护焊堆焊技术,通过调整金属粉芯焊丝中高碳铬铁的添加量,在Q235钢板表面制备不同高碳铬铁含量的Fe-Cr-B-C堆焊合金,采用金相显微镜、扫描电镜、能谱(energy dispersive spectrometer,EDS)及X射线衍射(X-ray diffraction,XRD)等分析测试方法,分析不同合金元素Cr,C含量对堆焊合金组织和性能的影响。结果表明,堆焊合金的组织为马氏体+网状(Fe, Cr)3(B, C)及少量的微量M7C3;随着高碳铬铁粉添加量的增加,网状(Fe, Cr)3(B, C)体积分数增加,堆焊合金中的马氏体具有较高的硬度,合金元素Cr能够使基体组织固溶强化,网状碳化物(Fe, Cr)3(B, C)作为耐磨骨架,阻碍磨料在磨损过程中的挤压与切削作用,使堆焊层耐磨性均高于65Mn钢3~4倍,其磨损机理为微犁沟。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号