首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melt-quenched Ni65Al35 and Ni56Co10Al34 (at %) alloys are studied by electrical resistance measurement and electron microscopy. The effects of the isothermal holding time in the supersaturated β solid solution field and the heating rate during thermal cycling on the restoration of the reversibility of the martensitic transformation are investigated. After short-term aging in the B2 austenite field followed by long-term aging in the L10 martensite field, the melt-quenched Ni65Al35 and Ni56Co10Al34 alloys retain their high thermal stability of the reversibility of the martensitic transformation.  相似文献   

2.
The influence of the holding time upon annealing on the temperature of the viscous–brittle transition (temperature of embrittlement) Tf in a cobalt-based amorphous alloy of the composition Co69Fe3.7Cr3.8Si12.5B11 with a very low saturation magnetostriction λs (<10–7) has been studied. It has been established that the dependence of the embrittlement temperature Tf on the of time of holding ta can be described by an Arrhenius equation and that the embrittlement at the annealing temperatures above and below 300°C is described by different kinetic parameters. In the alloy under study, irrespective of the holding time, embrittlement occurs in a very narrow range of annealing temperatures, which does not exceed 5 K. Based on the experimental data on the evolution of the hysteresis magnetic properties upon the isochronous annealings and upon the isothermal holding, the regime of heat treatment that ensures a very high (about 50000) magnitude of the permeability µ5 (H = 5 mOe, f = 1 kHz) without the transition of the alloy into a brittle state has been determined.  相似文献   

3.
H3PW12O40/TiO2–SiO2 was synthesized by impregnation method which significantly improved the catalytic activity under simulated natural light. The properties of the samples were characterized by Fourier transform infrared spectra (FTIR), X-ray powder diffraction pattern (XRD), Scanning electron micrographs (SEM), and Zeta potential. Degradation of methyl violet was used as a probe reaction to explore the influencing factors on the photodegradation reaction. The results show that the optimal conditions are as follows: initial concentration of methyl violet of 10 mg·L?1, pH of 3.0, catalyst dosage of 2.9 g·L?1, and light irradiation time of 2.5 h. Under these conditions, the degradation rate of methyl violet is 95.4 %. The reaction on photodegradation for methyl violet can be expressed as the first-order kinetic model, and the possible mechanism for the photocatalysis under simulated natural light is suggested. After used continuously for five times, the catalyst keeps the inherent photocatalytic activity for degradation of dyes. The photodegradation of methyl orange, methyl red, naphthol green B, and methylene blue was also tested, and the degradation rate of dyes can reach 81 %–100 %.  相似文献   

4.
Perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) powders were synthesized using two methods, solid-state reaction (SSR) method and citrate-EDTA complexing method (CC-EDTA). Then the powders were pressed to green disks of 19 mm in diameter and sintered at 1140°C for 5 h. The shrinkage rate and relative density of the membranes prepared from the perovskite-type powders were determined and calculated, and the powders and derived membranes were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the shrinkage rates of the two kinds of disks are nearly the same (about 10%). The disks prepared by the SSR method had a bigger grain size and lower relative density than those prepared by the CC-EDTA method. The conductivity of the membranes prepared by the SSR method was about 38 S/cm, higher than that of the membranes prepared by the CC-EDTA method, which was about 30 S/cm, at the same temperature of 600°C.  相似文献   

5.
The fine structure and electrophysical properties of nonstoichiometric YBa2Cu3O7 − δ ceramics and the effect of low-temperature annealing (t ⩾ 200°C) in various atmospheres on these parameters have been studied. It has been shown that, during annealing in a vacuum, the decomposition is quite sluggish; structures typical of initial stages of decomposition are observed. The decomposition in an inert-gas atmosphere occurs more actively, and structures typical of stages of deep decomposition are realized. It has been found that, during low-temperature annealing, the structure and properties are affected by two factors; these are the decomposition into phases differing in the oxygen content, and water absorption, leading to the transformation with the formation of a pseudo-cubic lattice. The annealing atmosphere substantially affects the kinetics of both processes.  相似文献   

6.
Xerogels with a bifunctional surface layer of the ≡Si(CH2)3NH2/≡Si(CH2)3SH composition are synthesized by hydrolytic co-polycondensation of bis(triethoxy)silane (C2H5O)3Si(CH2)2Si(OC2H5)3 and two trifunctional silanes, namely, 3-aminopropyltriethoxysilane and 3-mercaptopropyltrimethoxysilane. Using IR, 1H MAS NMR, and 13C CP/MAS NMR spectroscopic techniques, it is shown that in addition to complexing groups, the surface layer also contains water, silanol groups that are involved in the hydrogen bond formation and also residual ethoxysilyl groups. According to 29SiCP/MAS NMR spectroscopic data, the degree of polycondensation of synthesized xerogels exceeds 80%. It is found that the use of 1,2-bis(triethoxysilyl)ethane as the structuring agent in place of tetraethoxysilane allows one to synthesize bifunctional xerogels with the highly developed biporous structure (S sp = 607–680 m2/g, V c = 1.38–1.47 cm3/g, d = 2.9–3.1 and 18.3 nm). Changing the ratio structuring-silane/functionalizing-silane-mixture from 2: 1 to 4: 1 in the reaction system has virtually no effect on the porous structure parameters of final xerogels.  相似文献   

7.
Effects of doping (with Ce and Pr) and substitution of Sr, Nd, Eu, and Ni for Ba and Cu on the lowtemperature (T = 200–300°C) decomposition of oxygen-nonstoichiometric Ba2YCu3O7 ? δ have been studied. Both the doping and partial substitution for any of the principal components was found to increase the stability of the 123 compounds with respect to the decomposition into oxygen-depleted and oxygen-rich phases. Both doping and substitution to a level of ~2% lead to a narrowing of the immisibility dome and a decrease in the critical temperature. In the first place, the decomposition is suppressed in the bulk of grains. To increase the stability of near-boundary regions of grains, a high degree (~20 at %) of substitution is necessary.  相似文献   

8.
Air-oxidation behavior of a Ni53Nb20Ti10Zr8Co6Cu3 amorphous ribbon was studied at 400–550 °C. The oxidation kinetics of the amorphous alloy followed a two-stage parabolic rate law with its oxidation rates steadily increasing with temperature. The steady-state oxidation rate constants of the alloy were faster than those of pure Ni. Triplex scales formed on the glassy alloy, containing an outer layer of NiO. The scales formed in the intermediate layer consisted of Nb2O5, NiO, and uncorroded α-Ni, while an additional Nb2Zr6O17 phase was also detected in the inner layer. The formation of multilayered scales is responsible for the faster oxidation for the Ni6-AR.  相似文献   

9.
In the present work, the α/β Si3N4 ceramics were fabricated by spark plasma sintering (SPS) at 1400-1500 °C for 6 min with 3wt.%MgO + 5wt.%Al2O3 and 3wt.%MgO + 5wt.%Y2O3 as sintering additives. The results showed that the phase composition, microstructure and mechanical properties of α/β Si3N4 ceramics were highly dependent on the type of sintering additive. The incomplete phase transformation from α to β occurred in the presence of an oxynitride (Mg-Al(Y)-Si-O-N) liquid phase. Compared with MgO-Al2O3, MgO-Y2O3 can significantly improve the β conversion rate of as-sintered α/β Si3N4 ceramics. And the as-sintered ceramics using MgO + Al2O3 as sintering additives had higher mechanical properties.  相似文献   

10.
Titanium has a great effect on the digestion of bauxite in the Bayer process because it reacts readily at high temperatures in alkaline sodium aluminate solution. Under this consideration, the hydrothermal conversion of Ti-containing minerals in the system of Na2O–Al2O3–SiO2–CaO–TiO2–H2O with increased temperatures was studied based on the thermodynamic analysis and systematic experiments. The results show that anatase converts to Al4Ti2SiO12 at low temperatures (60–120 °C), which is similar to anatase in crystal structure. As the temperature continues to rise, Al4Ti2SiO12 decomposes gradually and converts to Ca3TiSi2(Al2Si0.5Ti0.5)O14 at 200 °C. When the temperature reaches 260 °C, CaTiO3 forms as the most stable titanate species for its hexagonal closest packing with O2? and Ca2+. The findings enhance the understanding of titanate scaling in the Bayer process and clarify the mechanism of how additive lime improves the digestion of diaspore.  相似文献   

11.
Electrochemical and interfacial properties of (PEO)10LiCF3SO3−Al2O3 composite polymer electrolytes (CPEs) prepared by either ball milling or stirring are reported. Ball milling was introduced into a slurry preparative technique utilizing PEO, lithium salt and Al2O3 powder ranging from 5 to 15 wt.%. The ionic conductivity was increased by ball milling over a range of temperatures. In particular, a significant increase at low temperature below the melting point of crystalline PEO was observed. Interfacial stability between lithium electrode and CPE was significantly improved by the addition of alumina as well as by ball milling. The electrochemical stability window produced by (PEO)10LiCF3SO3−Al2O3 ball milling was higher than that of stirring, which was about 4.4 V. Charge/discharge performance of Li/CPE/S cells with (PEO)10LiCF3SO3−Al2O3-12 hr ball milling was superior to that of a pristine polymer electrolyte due to the low interface resistance and high ionic conductivity.  相似文献   

12.
Temperature dependences of the third and other higher harmonics of the magnetization of textured polycrystalline samples of YBa2Cu3O7 ? x have been studied in the temperature range of 77–120 K. It has been revealed that the nonlinearity of magnetization of YBa2Cu3O7 ? x is observed up to temperatures that considerably exceed the temperature of transition into the superconducting state. The observed nonlinearity of magnetization of YBa2Cu3O7 ? x is ascribed to the appearance of a pseudogap state at T ~ 102 K in this compound. A method of determining the temperature of the appearance of the pseudogap T * in the high-T c compounds is suggested, which is based on the measurement of magnetization harmonics.  相似文献   

13.
This work focuses on the role of common supporting electrolytes (SEs) in the electro-chemical inertness of Ti-based materials employed for the anodic (direct) oxidation coupled with H2O2 electro-generation at the graphite cathode for the concurrent decomposition of organic contaminants. SEs are added to boost up the ionic conductivity of solution but a question always remains on the effect of SEs on the stability of anode materials. The use of ClO 4 ? is encouraged in the electro-Fenton process as it does not form complexes with Fe2+/Fe3+; however, it is found that ClO 4 ? corroded the TiO2 coated Ti (TiO2–Ti) anode very fast (>60 min) and, Ti4+ ions formed a yellow color complex (λmax = 380 nm) with H2O2. The influence of Cl, NO 3 ? and SO 4 2? was insignificant on the stability of TiO2–Ti. The cell current efficiency of H2O2 formation dropped sharply with in the case of TiO2–Ti anode. The TiO2–Ti corrosion also reduced the mass transfer co-efficient of DO transport from bulk to the cathode surface because of Ti4+ adsorption on graphite.  相似文献   

14.
A study of the restoration of the structure and superconducting properties of the nonstoichiometric Ba2YCu3O7 ? δ with different oxygen contents after low-temperature decomposition at T = 200 and 300°C has been carried out. It has been shown that the annealing of the decomposed samples at temperatures higher than the decomposition range (e.g., at 400–900°C) does not lead to the complete restoration of the structure because of the presence of defects in the cation sublattices, which appear in the course of decomposition. The degree of restoration is less, the greater the degree of decomposition. An analogy has been revealed between the structure and properties of samples which underwent low-temperature decomposition and were subjected to irradiation by high-energy particles; a similar structure was found in ceramics synthesized at reduced temperatures (<900°C).  相似文献   

15.
The composition and the structure of ceramic EuBa2Cu3O6 + δ (Eu-123) oxide samples annealed in steps with varying processing conditions (in air or oxygen and argon atmosphere at a temperature of 940–960°С for 1–70 h with or without homogenization) were studied by the X-ray phase and chemical analysis, electron diffraction pattern analysis, elemental analysis, and high-resolution transmission electron microscopy. Regardless of the processing conditions, Eu-123 nanostructured oxide with a tetragonal or orthorhombic structure and domains 1–20 nm in size was obtained as a result of annealing. Nanostructuring of the samples, which was revealed by high-resolution electron microscopy, is attributed to their chemical nature: the presence of identical structural elements in members of the homologous Eu n Ba m Cum + nO y series of oxides allows them to intergrow coherently and create an illusion of a single crystal. Just like any other member of the Eu n Ba m Cum + nO y series, oxide Eu-123 is disproportionate depending on the annealing conditions to form other members of this series located on either side of the dominant oxide. Temperature Tc of the superconducting transition of each member of the series depends on the average oxidation state of copper \(\overline {Cu} \). At \(\overline {Cu} \) < 2, all members of the series have a tetragonal structure and do not exhibit superconducting properties. At \(\overline {Cu} \) = 2.28, five members of the Eu n Ba m Cum + nO y series with matrices (Ba : Cu) 5 : 8, 3 : 5, 2 : 3, 5 : 7, and 3 : 4 exhibit superconducting properties with Tc = 82–90 K.  相似文献   

16.
To estimate the reliability of the literature data on the magnetic structures of quasi-binary alloys Fe x Mn1 ? x Sn2 obtained without using methods of symmetry analysis, we calculated the basic functions of the irreducible representations of the space group D 4h 18 (I4/mcm) with the stars of wave vectors determined from an analysis of previously published models of these structures. A comparison of these models with the results of calculations has been performed. A conclusion is made that the models of magnetic structures examined are in agreement with the results of the symmetry analysis performed in this work.  相似文献   

17.
The permeability and stability of Sm0.7Sr0.3CoO3?δ (SSCO) regarding the special requirements for carbon capture and storage (CCS) application were investigated. Pure CO2 was used as the sweep gas at 900 °C, leading to that the oxygen permeation flux decreases by about 34 %. Several cycles of changing the sweep gas between helium and CO2 indicate the good reversibility of this degradation. Both carbonate formation and adsorption of CO2 on the membrane surface are responsible for the degradation of the membrane performance. The better CO2 resistance results from the substitution of Sm for Sr due to the higher acidity of Sm2O3 (1.278) than that of SrO (0.978) and a discontinuous layer of carbonate.  相似文献   

18.
The grain growth kinetics of 8YSZ ceramics processed using spark plasma sintering (SPS) has been investigated in the temperature ranging from 1100°C to 1500°C. The activation energy during SPS densification was obtained as 332 kJ/mol with grain boundary diffusion as a dominant mechanism. Further, the effect of CeO2 on the densification kinetics of 8YSZ ceramic processed via SPS and conventional sintering (CS) has been delineated. The lower grain boundary mobility of CS-processed composites (an order of magnitude lower than SPS) is attributed to the solute drag and lattice distortion mechanism. However, no significant change in the grain boundary mobility was observed with CeO2 addition (~?14.7–43.9?×?10?18 m3/N/s for CS and 107.2–116.7?×?10?18 m3/N/s for SPS) revealing that the defect concentration is nearly constant in 8YSZ. The study highlights the effect of sintering techniques (SPS and CS) and reinforcement (CeO2) on engineering the desired microstructure of 8YSZ ceramic.  相似文献   

19.
The article presents investigations of Ti40Cu36Zr10Pd14 bulk metallic glass crystallization process heated with the rates of 10, 60, 100 and 140 K/min. High heating rates experiments were performed in a new type of differential scanning calorimeter equipped with a fast responding thermal sensor. Phase composition and microstructure were studied with x-ray diffraction and transmission electron microscopy. The observed crystallization proceeded in two separate steps. Applied high rates of heating/cooling resulted in the crystallization of only one CuTi phase, replacing typical multi-phase crystallization. The microstructure after crystallization was polycrystalline with some amount of amorphous phase retained. Kinetic parameters were determined with the use of the Kissinger and Friedman iso-conversional analysis and Matusita–Sakka iso-kinetic model. The kinetic analysis supplies results concerning autocatalytically activated mechanism of primary crystallization with decreasing activation energy and small density of quenched-in nuclei, in good agreement with previous structural investigations. The mechanism of secondary crystallization required dense nuclei site, increasing activation energy and large nucleation frequency. The amorphous phase of Ti40Cu36Zr10Pd14 BMG revealed high thermal stability against crystallization. Application of high heating rates in DSC experiments might be useful for the determination of mechanism and kinetic parameters in investigations of metallic glasses crystallization, giving reasonable results.  相似文献   

20.
The Ti3O5 powder with uniform morphology has been successfully obtained and used to synthesize Li4Ti5O12/Ti3O5 composite material by ball milling for modifying Li4Ti5O12-based, lithium–ion battery anodes. Moreover, according to the relative performance investigations, the synthesized Li4Ti5O12/Ti3O5 composite shows better electrochemical properties than that of the Li4Ti5O12. At a high rate (10 C), the capacity of the Li4Ti5O12/Ti3O5 composite electrode is 139.8 mAhg?1, whereas the value of Li4Ti5O12 is 121.6 mAhg?1, showing a capacity enhanced about 14.97%. After 100 cycles at 0.2 C, the discharge capacity of Li4Ti5O12/Ti3O5 remains at 160 mAhg?1 with a capacity loss of 2.6%. The results indicate that the Li4Ti5O12/Ti3O5 composite electrode can be used as anode material with a relatively higher rate capability and excellent cycle performance in lithium–ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号