首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
通过加热和过渡金属离子(Fe2+)活化过硫酸钾2种方法,分解过硫酸钾产生硫酸根自由基处理苯酚废水。结果表明,在加热条件下,当温度100℃、K2S2O8投加量为m(K2S2O8)∶m(苯酚)=0.50、加热时间3h,苯酚和COD去除率分别达50%和45%。在30℃以下时苯酚基本无降解。Fe2+在常温下即可分解过硫酸盐产生.SO4-;加热和Fe2+协同作用能进一步提高处理效果。在100℃时,与单独加热活化相比,苯酚及COD去除率分别增加了11%和8%。在整个反应体系中,pH对苯酚降解率影响较大,实验证明在酸性条件下过硫酸钾能产生更多的硫酸根自由基,达到更好的去除效果。  相似文献   

2.
利用微波及活性炭共同作用促进K_2S_2O_8产生硫酸根自由基降解苯酚废水,通过改变反应时间、活性炭的投加量、K_2S_2O_8的投加量、微波的消解功率以及pH,对比反应前后苯酚浓度及COD的变化,确定该体系反应的最佳条件。研究表明,在微波功率560 W、辐射5 min、活性炭的投加量0.17g、m(K2S2O8)/m(苯酚)=0.5、pH=4时,200mg/L体积为30mL的苯酚去除率达到86%,COD去除率达到85%。  相似文献   

3.
Fenton试剂+活性炭吸附处理焦化废水的试验研究   总被引:1,自引:0,他引:1  
探讨Fenton氧化阶段H2O2投加量、Fe2+投加量、初始pH值、反应时间和温度,以及吸附阶段吸附剂投加量和pH值等因素,对焦化废水COD、氨氮、色度去除率的影响,确定了最佳处理条件.结果表明:Fenton氧化+活性炭处理方法处理焦化废水具有良好效果,COD、氨氮和色度的去除率分别达97.74%,83.76%,97.33%,该试验结果为实际工艺处理焦化废水提供了实验依据.  相似文献   

4.
Fenton试剂法处理偶氮类染料废水的实验研究   总被引:3,自引:0,他引:3  
为了评价Fenton试剂(Fe2+-H2O2)法处理高浓度偶氮染料废水的可行性,对天津市某厂经纳滤处理后的染料废水进行处理,研究了pH值、H2O2投加量、Fe2+投加量、反应时间、H2O2投加方式等因素对废水CODCr去除效果的影响.结果表明:在H2O2(质量分数为30%)投加量为12.5 mL/L、pH值为3、Fe2+与H2O2的摩尔比为1∶10、反应时间为6 h、分批次投加H2O2的最佳运行条件下,CODCr去除率达到81.3%,处理效果较理想.  相似文献   

5.
采用铁碳微电解和Fenton法联合工艺处理实际印染废水,研究pH、反应时间、Fe/C体积比、H2O2浓度对实际印染废水脱色率及COD去除率的影响规律,并优化了联合技术的最佳工艺条件.试验结果表明:在短期时间内,Fe/C体积比和H2O2浓度对废水的处理效果影响最显著,最佳工艺条件为进水pH=4,Fe/C体积比为1∶1,H2O2的投加量20ml/L,反应时间30min,COD的去除率可以达到97%以上,色度的去除率达到99%以上.  相似文献   

6.
为了提高制药厂制药废水的可生化性,采用Fenton氧化法对其进行预处理,探讨了pH值、H2O2投加量、FeSO4投加量、反应时间等因素对COD去除率的影响.结果得到最佳反应条件为:pH值为1,H2O2(30%)投加量为0.25 mL(约833 mg/L),FeSO4.7H2O(0.3 mol/L)投加量为1 mL(约834 mg/L),反应时间为90 min,在此条件下,COD去除率可达21.97%,并用PAC作为混凝剂对此废水进行混凝实验,其对COD的去除率只有7.9%.两者相比,Fenton氧化法的效果好,可作为生化处理的预处理.  相似文献   

7.
研究了Fenton法和UV-Fenton法对垃圾渗滤液的处理,考察了Fe SO4·7H2O投加量、H2O2/Fe SO4·7H2O比值、初始p H值和反应时间等因素对渗滤液中CODCr、氨氮的去除效果。结果表明:在Fenton氧化体系中,最佳反应条件为:Fe SO4·7H2O的投加量为0.03 mol/L,H2O2Fe SO4·7H2O比值为3,原水初始p H值为3,反应时间为90 min;在紫外(UV)辐照强度为65 uw/cm2,辐照时间为3 min的条件下,UV-Fenton反应体系下对渗滤液中有机物的去除比单一Fenton法的高。  相似文献   

8.
为提出基于新型磁纳米Fe3 O4催化剂的类Fenton体系,采用化学共沉淀法制备磁纳米Fe3 O4,用四甲基氢氧化铵( TMAH)对所制备的磁纳米Fe3 O4进行表面改性,就Fe3 O4-H2 O2类Fenton体系对苯酚废水的处理效果进行探讨,考察催化剂投量、H2 O2浓度、pH、反应时间等因素对COD和挥发酚去除率的影响.结果表明:磁纳米颗粒平均粒径为30 nm,并在20~100 nm内呈现良好的粒度分布.不同剂量TMAH包覆的3种催化剂经超声预处理后,在室温(13℃)下对50 mg/L苯酚(相当于112 mg/L COD)的降解效果基本一致.当催化剂投量为0.8 mmol/L、H2 O2浓度为2.0 mmol/L、pH为4.5、反应时间180 min时,COD去除率最高可达72%;催化剂投量为0.4 mmol/L、H2 O2浓度为2.0 mmol/L、 pH为4.5、反应时间为90 min时,挥发酚的去除率接近100%.而在重复使用方面,3#Fe3O4-TMAH(2 mL)催化剂的回用性最好,4次反应COD的去除率分别为73%、29%、28%、26%,挥发酚去除率分别为100%、84%、67%、54%.该类Fenton体系具有不产生多余泥量的优点,且磁纳米催化剂在外磁场作用下可实现快速分离回收.  相似文献   

9.
目的研究UV/Fenton氧化法中各个因素对去除水中苯酚的影响,确定UV/Fenton法处理苯酚废水的工艺条件.方法保持UV/Fenton体系的基准条件不变,通过改变H2O2投加量、Fe2+浓度、废水初始pH值、载气等试验条件,考查这些因素对UV/Fenton法处理苯酚废水效果的影响.结果UV/Fenton氧化法对苯酚废水有较好的去除效果和较高的反应速率.当废水初始pH值为3.0时,经30 min反应,苯酚去除率达到99%,COD去除率达到86%.苯酚废水COD去除率滞后于苯酚去除率.结论UV/Fenton法能够在较短的时间内去除苯酚含量,COD、H2O2投加量、Fe2+浓度对处理效果影响较大,H2O2投加量决定苯酚去除率和COD去除率,而Fe2+质量浓度是影响去除速率的主导因素.  相似文献   

10.
干法腈纶废水中SO32-的空气催化氧化性能研究   总被引:3,自引:0,他引:3  
对干法腈纶废水中SO2 -3 进行了直接空气氧化和空气催化氧化处理的对比试验 ,并研究了直接空气氧化、加入不同剂量Mn金属离子均相催化剂对腈纶废水中SO2 -3 去除率的影响。研究结果表明 ,当水温 80℃ ,空气流量为 0 .4L/min(压力 0 .2MPa) ,空气催化氧化处理与直接空气氧化处理对比 ,显著提高了对SO2 -3 的去除率 ,缩短了反应时间 ,使腈纶废水中的SO2 -3 浓度得到大幅度的降低。同时 ,催化氧化处理中 ,SO2 -3 去除率与Mn金属均相催化剂投加量、氧化反应时间之间存在着一定的相关性。增加催化剂投加量、延长氧化反应时间都将提高SO2 -3的去除率 ,但催化剂投加量增加到 6 0mg/L以上对进一步缩短反应时间和提高SO2 -3 去除率的效果并不明显。作为干法腈纶生产废水预处理措施 ,在Mn金属离子均相催化剂投加量为 4 0mg/L ,80min氧化反应时间就能得到很好的处理效果  相似文献   

11.
为提高垃圾渗滤液生化出水的化学需氧量(chemical oxygen demand,COD)、色度以及氨氮的去除效率,在不同的臭氧通气量、过硫酸钠投加量、pH、反应时间等反应条件下,研究了臭氧过硫酸盐耦合体系对于垃圾渗滤液生化出水的氧化效果.实验结果表明:COD、色度和氨氮的去除率随着过硫酸盐、臭氧通气量、反应时间的增加而增大,并且溶液pH为10的环境更有利于用臭氧过硫酸盐体系氧化降解污染物,在臭氧通气量为0.8 g/h、过硫酸钠投加量为10 g/L、pH为10、反应时间为200 min的条件下,废水的COD、色度和氨氮的去除率分别达76.3%、92.0%和55.4%.相较于单一过硫酸盐氧化方式,在过硫酸盐氧化过程中加入臭氧,处理效果显著提高,臭氧氧化与过硫酸钠氧化产生了一定的协同效应.  相似文献   

12.
为了处理餐饮油脂废水中难以生物降解的有机物,采用类Fenton试剂(Fe-H2O2)对其进行处理,分别考察了pH值、反应时间、反应温度、H2O2投加量和Fe投加量对CODCr和动植物油去除率的影响,总结得出了H2O2投加量的系列计算公式。结果表明:废水初始CODCr浓度为1 633.52 mg/L,油脂值为349.58 mg/L时,在pH值为2、反应时间30 min、反应温度60℃、H2O2(30%)投加量为5 mL、nH2O2∶nFe=6∶1的最优条件下,CODCr和动植物油的去除率分别达到91.2%和96.47%。  相似文献   

13.
针对某难处理高浓度乳化液废水,提出了隔油–破乳–Fenton氧化–混凝联合处理工艺.试验结果表明:乳化液废水静浮20 min除去上层浮油,在废水pH值8.0,PAC投加量8.0 g/L,0.1‰PAM投加量10 mL/L的条件下破乳效果较好.废水继续通过Fenton试剂氧化及混凝沉降处理,当Fenton氧化初始pH值3.5,H2O2(30%)投加量12 mL/L,[H2O2]/[Fe2+]=4∶1,一次性投加FeSO4·7H2O,反应时间45 min及混凝沉降pH值8.0,混凝剂投加量0.3 g/L时,处理效果令人满意.采用该工艺处理高浓度乳化液废水,其COD去除率为99.91%,浊度去除率为98.96%,石油类去除率为99.97%,处理后水质达到《污水综合排放标准》(GB8978-1996)二级标准.  相似文献   

14.
采用微波Fenton耦合超声催化内电解工艺处理垃圾压缩废水.考察了微波升温速率、Fen-ton试剂投加量、超声功率、超声时间、Fe/Cu/沸石质量比、曝气量及回流比等因素对水样COD和色度去除率的影响.结果表明,保持水样pH不变,H2O2与FeSO4投加量分别为117.6mmol/L、23.4mmol/L,在170W功率下辐射100s,升温速率为12.0℃/min,COD和色度去除率分别达到了27.14%和74.15%.调节水样pH为3.0,超声功率80W,Fe-Cu-沸石质量比为6∶3∶2,在曝气量为0.2L/min下反应90min,COD和色度去除率分别为42.38%和82.60%.在回流比为0.8下,耦合工艺出水水质稳定,COD去除率均在55%以上,最高达到62.81%;色度去除率均大于83%,最高达到94.7%.  相似文献   

15.
电催化氧化法处理难降解有机废水   总被引:6,自引:0,他引:6  
采用电催化氧化法对高浓度含酚废水进行处理,考察了pH值、温度、电压、NaCl的投加量等因素对酚去除率、COD去除率的影响.结果表明,这种方法能有效去除废水中的酚和COD,特别是电压、Na-Cl的投加量这两个因素对酚和COD的去除率影响较大.采用了两种复合电催化氧化法处理含酚废水,一种是直接投加H2O2,结果表明酚去除率可达95%以上;另一种是加浓H2SO4,在适宜条件下,酚去除率可达90%以上.由此得出,对含难降解有机物废水的处理,电催化氧化法能达到满意的效果.  相似文献   

16.
Fenton氧化预处理苯胺废水的试验研究   总被引:2,自引:0,他引:2  
研究采用Fenton试剂预处理苯胺生产废水。以废水的COD去除率和苯胺去除率为指标,通过单因素试验对Fenton试剂氧化有机物的影响因素进行了分析。结果表明:在反应初始pH值为3.5、H2O2投加量为0.3ml/l、FeSO4·7H20投加量为0.4g/L、反应时间为80min的条件下,COD和苯胺的去除率分别达到54.8%和70.3%,改善了废水的可生化性,为后续的生化处理提供了有利条件。  相似文献   

17.
UV/Fenton光氧化降解活性艳红染料废水的试验研究   总被引:1,自引:1,他引:1  
目的研究UV/Fenton法对活性艳红染料废水色度和COD的处理效果,解决染料废水色度和COD难降解的问题.方法通过比较不同反应体系的处理效果,验证了UV/Fenton氧化法的优越性.并对影响UV/Fenton氧化法处理废水效果的主要操作条件进行了试验研究,确定了反应的最佳操作条件.结果研究表明,H2O2投加量、Fe2 投加量、pH值条件的改变对染料废水的处理效果影响很大.当pH=3,30%H2O2投加的体积分数为2.4 mL/L,Fe2 投加的质量浓度为320 mg/L,反应时间为15 min时为氧化反应的最佳操作条件,脱色率和COD去除率分别达99.41%和93.21%.结论UV/Fenton法对染料废水的色度和COD能够进行有效的去除,并且操作简单.但是,该法在大规模的应用上仍然存在一定的局限性,如pH应用范围窄、二次污染问题等.  相似文献   

18.
目的以稻草作为碳源,研究不同相对投加量对硫酸盐还原菌(SRB)处理硫酸盐废水的影响,确定去除硫酸盐的最佳稻草相对投加量.方法利用静态试验,在6组反应器(R1-R6)中接种富含SRB活性污泥,pH在7-7.5,T=35℃,w(SO4^2-)=2000mg/L的厌氧环境下,分别投加1g,5g,10g,15g,20g,25g稻草,测定体系中SO4^2-、COD、VFA、pH等指标变化情况.结果6组反应器硫酸盐去除率分别为7.72%,67.52%,100%,100%,100%,VFA去除率分别为89.45%,70.48%,32.12%,20.67%,19.58%,15.79%.R1、R2中COD去除率均达到100%,R3~R6中COD质量浓度不断增加.反应体系中C、N、P质量比为m(C):m(N):m(PR1)=7:6.5:1,m(C):m(N):m(PR2)=100:5:1,m(C):rn(N):m(PR3-R6)远大于100:5:1,碳硫质量浓度比为w(COD)/w(SO4^2-)R1=0.028,w(COD)/w(SO4^2-)R2=0.417,w(COD)/w(SO4^2-)R3-R6〉3.体系中pH均呈现出先降低后上升的趋势.结论稻草相对投加量为5g时,硫酸盐的处理效果最佳,此相对投加量下w(COD)/w(SO4^2-)值接近SRB完全降解硫酸盐的理论值0.617,SO4^2-、COD与VFA去除率较高,1g稻草去除0.132g硫酸盐,反应体系中C、N、P质量比与pH均达到SRB适宜生长的环境条件.  相似文献   

19.
电化学氧化对甲基橙脱色的研究   总被引:5,自引:1,他引:4  
在阳极和阴极分别为Ti/RuO2、泡沫镍的无隔膜电解槽内,对甲基橙的电化学脱色效果进行了研究,探讨了外加电压、电解质量浓度、反应时间、以及NaCl的投加量对甲基橙脱色的影响.结果表明,增加电压、提高电解质量浓度、延长反应时间有利于甲基橙色度的脱除.对于含20mg/L的甲基橙溶液,电解质Na2SO4的量浓度为0.1mol/L、溶液pH=7、外加电压为8V,电解60min,溶液的脱色率达到88%,COD去除率为82.9%.  相似文献   

20.
微电解-Fenton工艺预处理难降解染料废水研究   总被引:9,自引:0,他引:9  
研究了微电解-Fenton工艺对难降解染料工业废水预处理效果,在提高染料废水可生化的同时实现有机物去除.通过对提高废水可生化性和有机物去除率因素的优选,确定了工艺的最佳技术参数和操作条件.结果表明:当PH=2,Fe/GAC体积比为1,反应时间60 min;H2O2采用连续投加方式,投加量为0.4%,pH=3,反应时间为30 min的条件下,可使废水的BOD5/COD质量浓度比由0.08提高到0.46,有机物(COD)去除率达75%以上.微电解-Fenton工艺能够有效改善难降解染料废水的可生化性和实现有机物的去除,并且操作简单,运行稳定,适宜于该废水的预处理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号