首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective was to determine the effects of linoleic acid and different isomers of conjugated linoleic acid (CLA) at different concentrations on hepatic lipid and glucose metabolism in the bovine. Monolayer cultures of hepatocytes obtained from 7- to 10-d-old Holstein bull calves were exposed to treatments from 16 to 64 h after plating. The treatments included 1.0 mM palmitic acid plus either 0.1 or 1.0 mM of cis-9, cis-12 linoleic acid, cis-9, trans-11 CLA, or trans-10, cis-12 CLA. Metabolism of palmitic acid to cellular triacylglycerol (TAG) was decreased when media contained cis-9, trans-11 compared with trans-10, cis-12 CLA. Total cellular TAG content was increased for the CLA isomers compared to cis-9, cis-12 linoleic acid. Both CLA isomers increased palmitic acid incorporation into phospholipids, cholesterol, and media triacylglycerol compared with cis-9, cis-12 linoleic acid at a concentration of 1.0 mM. Increasing the concentration of treatment fatty acids from 0.1 to 1.0 mM decreased oxidation of palmitic acid to acid-soluble products, but no effects of fatty acids were observed. There was no treatment effect on rates of gluconeogenesis from propionic acid. Overall, CLA isomers elicited changes in palmitic acid metabolism to cellular and media triacylglycerol, and cellular phospholipids and cholesterol, but had little or no effect on other measured pathways of lipid metabolism or gluconeogenesis in bovine hepatocytes.  相似文献   

2.
Short-term studies (< 5 d) involving abomasal infusion of a mixture of CLA isomers or pure trans-10, cis-12 CLA have demonstrated that supplements of conjugated linoleic acids (CLA) reduce milk fat synthesis during established lactation in dairy cows. Our objective was to assess longer term effects of supplementation during established lactation using a dietary supplement of rumen-protected CLA. Thirty Holstein cows were blocked by parity and received a dietary fat supplement of either Ca-salts of palm oil fatty acids (control) or a mixture of Ca-salts of palm oil fatty acids plus Ca-salts of CLA (CLA treatment). Supplements provided about 90 g/d of fatty acids and were topdressed on the TMR. The CLA supplement provided 30.4 g/d of CLA in which the predominant isomers were: trans-8, cis-10 (9.2%), cis-9, trans-11 (25.1%), trans-10, cis-12 (28.9%), and cis-11, trans-13 (16.1%). All cows were pregnant; treatments were initiated on d 79 of pregnancy (approximately 200 d prepartum) and continued for 140 d until dry off. Twenty-three cows completed the study; those receiving CLA supplement had a lower milk fat test (2.90 versus 3.80%) and a 23% reduction in milk fat yield (927 versus 1201 g/d). Intake of DM, milk yield, and the yield and content of true protein and lactose in milk were unaffected by treatment. Milk fat analysis indicated that the CLA supplement reduced the secretion of fatty acids of all chain lengths. However, effects were proportionally greater on short and medium chain fatty acids, thereby causing a shift in the milk fatty acid composition to a greater content of longer-chain fatty acids. Changes in body weight gain, body condition score, and net energy balance were not significant and imply no differences in cows fed the CLA supplement in replenishment of body reserves in late lactation. Likewise, maintenance of pregnancy, gestation length, and calf birth weight were unaffected by treatment. Overall, feeding a dietary supplement of rumen-protected CLA to pregnant cows over the last 140 d of the lactation cycle resulted in a marked reduction in milk fat content and yield, and a shift in milk fatty acid composition, but other milk components, DMI, maintenance of pregnancy, and cow well-being were unaffected.  相似文献   

3.
Conjugated linoleic acid (CLA) supplements have typically been comprised of 4 isomers (trans-8, cis-10; cis-9, trans-11; trans-10, cis-12; and cis-11, trans-13 CLA). Abomasal infusion of pure isomers has shown that trans-10, cis-12 CLA is a potent inhibitor of milk-fat synthesis, whereas cis-9, trans-11 CLA has no effect. However, there appear to be additional fatty acids that inhibit milk-fat synthesis, and the objective of this study was to investigate the effects of additional CLA isomers present in CLA supplements. Four rumen fistulated Holstein cows (141+/-8 DIM, mean+/-SE) were randomly assigned in a 4 x 4 Latin square experiment. Treatments were abomasal infusion of (1) skim milk (negative control), (2) trans-10, cis-12 CLA supplement (positive control), (3) trans-8, cis-10 CLA supplement, and (4) cis-11, trans-13 CLA supplement. Treatments 2 through 4 were targeted to provide 4 g/d of the CLA isomer of interest. The trans-8, cis-10 CLA supplement had no effect on milk-fat yield, whereas the trans-10, cis-12 CLA supplement reduced milk-fat yield by 35%. The cis-11, trans-13 CLA supplement contained some trans-10, cis-12 CLA, and when data were compared to the positive control treatment group, it was obvious that cis-11, trans-13 CLA also had no effect on milk-fat synthesis. Milk-fat content of specific CLA isomers was significantly elevated within respective treatment groups. Milk yield, DMI, and milk protein yield were unaffected by treatment. Overall, trans-10, cis-12 CLA reduced milk-fat synthesis, whereas the other major isomers present in CLA supplements (trans-8, cis-10 CLA and cis-11, trans-13 CLA) had no effect.  相似文献   

4.
生物合成共轭亚油酸菌种的筛选与鉴定   总被引:7,自引:0,他引:7       下载免费PDF全文
从传统泡菜和生牛乳中筛选出一株乳酸菌ZS2058能生物合成共轭亚油酸,经API系统鉴定为植物乳杆菌(Lactobacillusplantarum).该菌株在MRS培养基中将质量分数11.6%的亚油酸(1.024mg/mL)转化为共轭亚油酸,经气相色谱分析证实c9,t11 18∶2占75.9%,t10,c12 18∶2占24.1%.  相似文献   

5.
A gas chromatographic procedure was used for analysis of conjugated linoleic acid (CLA) isomers cis-9, trans-11-octadecadienoic; trans-10, cis-12 octadecadienoic; and trans-9, trans-11-octadecadienoic (c9t11, t10c12, t9t11) produced by lactobacilli. Four different cultures, two strains each of Lactobacillus acidophilus and Lactobacillus casei were tested for their ability to produce CLA from free linoleic acid in MRS broth supplemented with linoleic acid. Different concentrations of linoleic acid (0, 0.05, 0.1, 0.2 and 0.5 mg/ml) were added to MRS broth, inoculated with the lactobacilli, and incubated at 37 degrees C. Viable counts and amounts of individual isomers of CLA (c9t11, t10c12, t9t11) were measured at 0, 24, 48, and 72 h. All the cultures were able to produce free CLA in media supplemented with linoleic acid. Maximum production of CLA (80.14 to 131.63 microg/ml) was observed at 24 h of incubation in broth containing 0.02% of free linoleic acid. No significant (P > 0.05) increases in total CLA levels were observed after 24 h of incubation. The ability of the cultures to produce CLA in skim milk supplemented with 0.02% free linoleic acid also was studied. In this medium, the total amounts of free CLA after 24 h of incubation ranged from 54.31 to 116.53 microg/ml. The use of lactic acid bacteria able to form free CLA in cultured dairy products may have potential health or nutritional benefits. Free CLA in the products likely would be more readily available for absorption from the digestive tract than if it were incorporated into the cells of the starter culture.  相似文献   

6.
New Zealand Holstein-Friesian cows (n = 4) were used to quantify the importance of endogenous synthesis of cis-9, trans-11 conjugated linoleic acid (CLA) via Delta(9)-desaturase in cows fed a fresh pasture diet. The experiment was a 4 x 4 Latin square design with treatments arranged in a 2 x 2 factorial. Treatments lasted 4 d and were pasture only, pasture plus sterculic oil, pasture plus sunflower oil, and pasture plus sunflower oil plus sterculic oil. Abomasal infusion of sterculic oil inhibited Delta(9)-desaturase and decreased the concentration of cis-9, trans-11 CLA in milk fat by 70%. Using the changes in cis-9 10:1, cis-9 12:1 and cis-9 14:1 to correct for incomplete inhibition of Delta(9)-desaturase, a minimum estimate of 91% of cis-9, trans-11 CLA in milk fat was produced endogenously in cows fed fresh pasture. Dietary supplementation of a pasture diet with sunflower oil increased the proportion of long chain fatty acids in milk fat; however, the increase in vaccenic acid concentration was small (18%) and there was no increase in cis-9, trans-11 CLA concentration. Overall, results show that endogenous synthesis is responsible for more than 91% of the cis-9, trans-11 CLA secreted in milk fat of cows fed fresh pasture. However, the failure of plant oil supplements to increase the concentration of cis-9, trans-11 CLA in milk fat from pasture-fed cows requires further investigation.  相似文献   

7.
The objective of this experiment was to examine the effect of feeding fish oil (FO) along with fat sources that varied in their fatty acid compositions (high stearic, high oleic, high linoleic, or high linolenic acids) to determine which combination would lead to maximum conjugated linoleic acid (cis-9,trans-11 CLA) and transvaccenic acid (TVA) concentrations in milk fat. Twelve Holstein cows (eight multiparous and four primiparous cows) at 73 (+/- 32) DIM were used in a 4 x 4 Latin square with 4-wk periods. Treatment diets were 1) 1% FO plus 2% fat source high in stearic acid (HS), 2) 1% FO plus 2% fat from high oleic acid sunflower seeds (HO), 3) 1% FO plus 2% fat from high linoleic acid sunflower seeds (HLO), and 4) 1% FO plus 2% fat from flax seeds (high linolenic; HLN). Diets formulated to contain 18% crude protein were composed of 50% (dry basis) concentrate mix, 25% corn silage, 12.5% alfalfa haylage, and 12.5% alfalfa hay. Milk production (35.8, 36.3, 34.9, and 35.0 kg/d for diets 1 to 4) was similar for all diets. Milk fat percentages (3.14, 2.81, 2.66, and 3.08) and yields (1.13, 1.02, 0.93, and 1.08 kg/d) for diets 1 to 4 were lowest for HLO. Milk protein percentages (3.04, 3.03, 3.10, and 3.08) and dry matter intake (DMI) (25.8, 26.0, 26.2, and 26.2 kg/d) for diets 1 to 4 were similar for all diets. Milk cis-9,trans-11 CLA concentrations (0.70, 1.04, 1.70, and 1.06 g/100 g fatty acids) for diet 1 to 4 and yields (7.7, 10.7, 15.8, and 11.3 g/d) for diets 1 to 4 were greatest with HLO and were least with HS. Milk cis-9,trans-11 CLA concentrations and yields were similar for cows fed the HO and the HLN diets. Similar to milk cis-9,trans-11 CLA, milk TVA concentration (1.64, 2.49, 3.74, and 2.41 g/100 g fatty acids) for diets 1 to 4 was greatest with the HLO diet and least with the HS diet. Feeding a high linoleic acid fat source with fish oil most effectively increased concentrations and yields of milk cis-9,trans-11 CLA and TVA.  相似文献   

8.
The objective of this study was to examine the effect of feeding fish oil (FO) along with fat sources that varied in saturation of 18 carbon fatty acids (high stearic, high oleic, high linoleic, or high linolenic acids) on rumen, plasma, and milk fatty acid profiles. Four primiparous Holstein cows at 85 d in milk (+/- 40) were assigned to 4 x 4 Latin squares with 4-wk periods. Treatment diets were 1) 1% FO plus 2% commercial fat high in stearic acid (HS); 2) 1% FO plus 2% fat from high oleic acid sunflower seeds (HO); 3) 1% FO plus 2% fat from high linoleic acid sunflower seeds (HLO); and 4) 1% FO plus 2% fat from flax seeds (high linolenic; HLN). Diets were formulated to contain 18% crude protein and were composed of 50% (dry basis) concentrate mix, 25% corn silage, 12.5% alfalfa silage, and 12.5% alfalfa hay. Milk production, milk protein percentages and yields, and dry matter intake were similar across diets. Milk fat concentrations and yields were least for HO and HLO diets. The proportion of milk cis-9, trans-11 conjugated linoleic acid (CLA; 0.71, 0.99, 1.71, and 1.12 g/100 g fatty acids, respectively), and vaccenic acid (TVA; 1.85, 2.60, 4.14, and 2.16 g/100 g fatty acids, respectively) were greatest with the HLO diet. The proportions of ruminal cis-9, trans-11 CLA (0.09, 0.16, 0.18, and 0.16 g/100 g fatty acids, respectively) were similar for the HO, HLO, and HLN diets and all were higher than for the HS diet. The proportions of TVA (2.85, 4.36, 8.69, and 4.64 g/100 g fatty acids, respectively) increased with the HO, HLO, and HLN diets compared with the HS diets, and the increase was greatest with the HLO diet. The effects of fat supplements on ruminal TVA concentrations were also reflected in plasma triglycerides, (2.75, 4.64, 8.77, and 5.42 g/100 g fatty acids, respectively); however, there were no differences in the proportion of cis-9, trans-11 CLA (0.06, 0.07, 0.06, and 0.07 g/100 g fatty acids, respectively). This study further supports the significant role for mammary delta-9 desaturase in milk cis-9, trans-11 CLA production.  相似文献   

9.
The objectives of this study were to determine if flavor differences between 2% fat pasteurized milks with and without naturally enhanced vaccenic acid (VA) and cis-9, trans-11 conjugated linoleic acids (CLA) levels could be detected over the commercial shelf life of the product and to determine if milk with elevated VA and cis-9, trans-11 CLA levels was more susceptible to development of light-induced oxidative flavor defects. Cows were fed a control diet or the same ration supplemented with 2% soybean oil and 1% fish oil (CLA diet). The milk, standardized to 2% fat, was pasteurized, homogenized, and stored in plastic containers at 4 degrees C. Oxidation was induced by exposing half of the containers to light. Testing was conducted at 1, 7, and 14 d postpasteurization. Average cis-9, trans-11 CLA content of the milks from the control and CLA diet groups was 0.52 and 4.74 g/100 g of fatty acids, respectively (8-fold increase). Average VA content of the milk from the control and CLA diet groups was 1.43 and 12.06 g/100 g of fatty acids, respectively (7.5-fold increase). Together, VA plus CLA represented almost 17% of the total milk fatty acids. There was no effect of light exposure on fatty acid composition initially or over the 14-d storage period. Although VA, cis-9, trans-11 CLA, and degree of unsaturation were significantly elevated in the milk from the CLA diet group, untrained panelists were unable to detect flavor differences initially or over time in 15 of 16 triangle test evaluations. Similarly, sensory results indicated no difference in susceptibility to the development of oxidized off-flavors between the milk from the control and CLA diet groups, even when oxidation was induced by light exposure.  相似文献   

10.
Z. Zeng    J. Lin    D. Gong 《Journal of food science》2009,74(4):M154-M158
ABSTRACT:  Natural sauerkraut fermentations contain a great number of lactic acid bacteria. The aim of this study was to identify lactic acid bacterial strains with high conjugated linoleic acid (CLA)-producing ability from natural sauerkraut fermentations. Fifteen CLA-producing lactic acid bacterial strains were isolated in the study. One of these strains, designated as NCUL005, showed the highest CLA-producing ability (0.623 mg/mL). The transformation efficiency of converting linoleic acid into CLA by NCUL005 was 26.67%. The CLA produced by NCUL005 comprised a mixture of 32.2% cis9, trans11-C18:2 isomer and 67.8% trans10, cis12-C18:2 isomer. NCUL005 was identified as Lactobacillus plantarum , based on its cell morphology, characteristics of lactic acid production, and analysis result from Biolog Microbial Identification System (BMIS).  相似文献   

11.
The objective of this study was to determine the effect of feeding a conjugated linoleic acid (CLA) stimulating diet for an extended period of time on milk cis-9, trans-11 CLA and vaccenic acid (VA) concentrations. Twenty cows (16 Holstein and 4 Brown Swiss) were divided into 2 groups (n = 10 per treatment) for a 10-wk study. Cows in group 1 were fed a traditional corn-soybean-basal diet (control), while those in group 2 were fed a blend of 0.5% fish oil from fish meal and 2% soybean oil from extruded soybeans (FMESB) to achieve higher milk fat cis-9, trans-11 CLA and VA. Diets were formulated to contain 18% CP and were composed (dry matter basis) of 50% concentrate mix, 25% corn silage, and 25% alfalfa hay. Dry matter intake was not affected by diet. Milk production increased in cows fed the FMESB diet. Milk fat and milk protein percentages decreased with the FMESB diet; however, milk fat and protein yields were not affected by treatments. Milk fat cis-9, trans-11 CLA and VA concentration (g/100 of fatty acids) and yield (g/d) were 2.5-fold greater for cows fed the FMESB diet over the 10 wk of fat supplementation. For cows fed the FMESB diet, contents of milk fat cis-9, trans-11 CLA and VA gradually increased from the first week of fat supplementation, reached the highest concentrations in wk 3, then gradually decreased during wk 4 and 5 and then remained relatively constant until wk 10. The concentration of cis-9, trans-11 CLA and VA from the control diet was relatively constant over the 10 wk of fat supplementation. Concentrations of cis-9, trans-11 CLA and VA in milk fat can be increased within a week by feeding a blend of fish meal and extruded soybeans, and that increase remains relatively constant after wk 5 of fat supplementation.  相似文献   

12.
Feeding conjugated linoleic acid (CLA) reduces milk fat synthesis in lactating dairy cows, and the effect has been shown to be specific for the trans-10, cis-12 CLA isomer. Our objectives were to examine potential mechanisms by which trans-10, cis-12 CLA inhibits milk fat synthesis. Multiparous Holstein cows (n = 4) in late lactation were used in a balanced 2 x 2 crossover design. Treatments consisted of a 5 d abomasal infusion of either skim milk (control) or purified trans-10, cis-12 CLA (13.6 g/d) emulsified in skim milk. On d 5 of infusion, mammary gland biopsies were performed and a portion of the tissue analyzed for mRNA expression of acetyl CoA carboxylase, fatty acid synthetase, delta 9-desaturase, lipoprotein lipase, fatty acid binding protein, glycerol phosphate acyltransferase and acylglycerol phosphate acyltransferase. Lipogenic capacity was evaluated with another portion of the tissue. Infusion of trans-10, cis-12 CLA decreased milk fat content and yield 42 and 48%, respectively and increased the trans-10, cis-12 CLA content in milk fat from < 0.1 to 4.9 mg/g. Reductions in milk fat content of C4 to C16 fatty acids contributed 63% to the total decrease in milk fat yield (molar basis). Analysis of the ratios of specific fatty acid pairs indicated trans-10, cis-12 CLA also shifted fatty acid composition in a manner consistent with a reduction in delta 9-desaturase. Mammary explant incubations with radiolabeled acetate established that lipogenic capacity was decreased 82% and acetate oxidation to CO2 was reduced 61% when cows received trans-10, cis-12 CLA. Infusing trans-10, cis-12 CLA also decreased the mRNA expression of all measured enzymes by 39 to 54%. Overall, data demonstrated the mechanism by which trans-10, cis-12 CLA inhibits milk fat synthesis includes decreasing expression of genes that encode for enzyme involved in circulating fatty acid uptake and transport, de novo fatty acid synthesis, desaturation of fatty acids and triglyceride synthesis.  相似文献   

13.
共轭亚油酸的营养分配作用及生物合成研究进展   总被引:1,自引:0,他引:1  
共轭亚油酸 (CLA)最早是从反刍动物瘤胃中分离出来的一种不饱和脂肪酸。因动物试验及癌细胞培养结果显示其具有强烈的抗癌作用、营养分配作用、抗动脉粥样硬化作用及免疫功能而备受瞩目。它可使啮齿类动物、哺乳类动物及人体脂含量明显下降 ,体内的蛋白含量提高 ,而总的体重不变。对它的营养分配机理的研究国外已有不少报道。主要结论是CLA可抑制脂肪细胞的分化并促进脂肪细胞的凋亡 ,另外CLA也通过抑制脂酰CoA脱氢酶活性而抑制脂肪酸的生物合成。反刍动物合成CLA有 2条途径 :1是在瘤胃细菌的作用下 ,亚油酸 (C18∶2 )被异构化为CLA。 2是脂肪组织中在Delta 9脱氢酶的作用下将反 -1 1C18∶1脱氢生成CLA。丙酸细菌、乳酸细菌均有催化亚油酸生成CLA的能力。  相似文献   

14.
Trans-10, cis-12 conjugated linoleic acid (CLA) is a potent inhibitor of milk fat synthesis. We examined the effect of low doses of trans-10, cis-12 CLA using Holstein cows in a 4 x 4 Latin square design. Milk yield and milk protein were unaffected, but abomasal infusion of 1.25, 2.5, and 5.0 g/d of trans-10, cis-12 CLA reduced milk fat yield by 7, 16, and 29%, respectively. When combined with previous data, the reduction in milk fat yield was curvilinear, relating to both quantity infused and milk fat content of trans-10, cis-12 CLA (R2 = 0.99 and 0.96, respectively). Further, changes in milk fatty acid composition indicated the mechanism involved inhibition of de novo fatty acid synthesis and the utilization of circulating fatty acids.  相似文献   

15.
Twelve multiparous Holstein cows averaging 65 (33 to 122) DIM were used in a 4 x 4 Latin square for 4-wk periods to determine whether feeding fish oil as fish meal would stimulate increased amounts of milk conjugated linoleic acid (cis-9, trans-11 C18:2; CLA) and transvaccenic acid (trans-11 C18:1; TVA) when the cows were fed extruded soybeans to supply additional linoleic acid. Treatment diets were 1) control; 2) 0.5% fish oil from fish meal; 3) 2.5% soybean oil from extruded soybeans; and 4) 0.5% fish oil from fish meal and 2% soybean oil from extruded soybeans. Diets were formulated to contain 18% crude protein and were composed (dry basis) of 50% concentrate mix, 25% corn silage, and 25% alfalfa hay. Intake of DM was not affected by diet. Milk production was increased by diets 2, 3, and 4 compared with diet 1 (control). Milk fat and milk protein percentages decreased with diets 3 and 4. Milk fat yield was not affected by treatments, but yield of milk protein was increased with supplemental fish meal and extruded soybeans or their blend. When diets 2, 3, or 4 were fed, concentrations of cis-9, trans-11 CLA in milk fat increased by 0.4-, 1.4-, and 3.2-fold, and TVA concentrations in milk fat increased by 0.4-, 1.8-, and 3.5-fold compared with the control milk fat. Increases in TVA and cis-9, trans-11 CLA were 91 to 109% greater when a blend of fish meal and extruded soybeans was fed than the additive effect of fish meal and extruded soybeans. This suggested that fish oil increased the production of CLA and TVA from other dietary sources of linoleic acid such as extruded soybeans.  相似文献   

16.
Conjugated linoleic acid (CLA) is a fatty acid with numerous putative health benefits and is a natural component of ruminant-derived food products. An intermediate in rumen biohydrogenation is cis-9, trans-11 CLA, the major CLA isomer in milk fat. However, the major source of cis-9, trans-11 CLA in milk is endogenous synthesis by delta 9-desaturase conversion of trans-11 C18:1, another rumen biohydrogenation intermediate. The desaturase indices serve as a proxy for delta 9-desaturase activity and are calculated from the ratios of fatty acid pairs that represent product/substrate for this enzyme. This study analyzed individual animal variation in milk fat content of cis-9, trans-11 CLA and in desaturase indices in milk fat. Thirty lactating Holstein cows were allocated to one of three treatment groups: one received a standard total mixed ration, one received a diet that produced an elevated milk fat content of CLA, and a third treatment group was alternated between these diets at 3-wk intervals over the 12-wk study. There was a two- to threefold variation among individuals on the same diet for both milk fat content of CLA and desaturase indices in milk fat. This hierarchy was maintained to a large extent over the 12-wk study even in the variable treatment group that alternated between the two diets. Within the variable diet treatment, some animals consistently had a substantial response in milk fat content of CLA to dietary shifts, whereas other cows had little or no response. We conclude that while diet is a major determinant of the CLA content in milk fat, individual animal differences also have a substantial effect. The variation among individuals includes differences related to both rumen biohydrogenation and delta 9-desaturase activity in the mammary gland.  相似文献   

17.
In view of the potential of rumen-protected conjugated linoleic acid (CLA) as a means to increase the CLA content of bovine milk, a study was undertaken to evaluate the effect of synthetic CLA on milk production and composition. Four Holstein cows received abomasal infusion of: 1) control, no lipid infusion, 2) 150 g/d of synthetic CLA, 31.7% cis-9, trans-11; 30.4% trans-10, cis-12, 3) 150 g/d of safflower oil, and 4) 150 g/d of tallow. Infusion was carried out for 20 to 22 h/d for 11-d periods in a 4 x 4 Latin square design. The milk fat concentration of cis-9, trans-11 and trans-10, cis-12 isomers of CLA was significantly increased with infusion of CLA. However, CLA infusion had other unexpected effects on milk production and composition. Milk yield dropped significantly during the period of CLA infusion. Furthermore, as well as the typical depression in milk fat reported with trans-10 isomers of CLA, other negative effects specific to CLA infusion were observed including a drop in lactose concentration and yield, a drop in protein yield, and an elevated somatic cell count. The important difference between synthetically produced CLA and CLA produced naturally in the cow is the much higher proportion of trans-10 isomers of CLA in the former. The results of this study suggest that the extent of enrichment possible for trans-10 isomers of CLA, and hence the usefulness of synthetic CLA for this purpose, may be limited because of unacceptable effects on milk yield and composition.  相似文献   

18.
郑钰  王武  张静  陈姗姗 《食品科学》2009,30(23):383-387
亚油酸异构酶可由保加利亚乳杆菌经诱导产生,可以将亚油酸(LA)转化为共轭亚油酸(CLA)。本实验对诱导保加利亚乳杆菌产亚油酸异构酶的条件进行研究,利用紫外和气质联用仪(GC-MS)检测所生成的CLA。结果表明:在培养基中添加1.5‰(V/V) LA 时所产酶的共轭亚油酸转化率最高;温度为36℃,培养36h 为较适的培养条件;单独添加0.1%(m/V)的乳糖或0.1%(m/V)的氯化钠有利于诱导产酶;在培养基中直接添加LA 的效果优于培养3至12h 后再进行添加。诱导所产酶可将LA 转化为CLA,且含有9c,11t-CLA 异构体。  相似文献   

19.
Rumenic (cis-9,trans-11 18:2) acid is the main conjugated linoleic acid (CLA) isomer in milk and other ruminant fats. Anhydrous regular and high-CLA butterfats were heated at 200 degrees C for 2, 4, and 6 h under atmospheric conditions. [1,5] Sigmatropic isomerization of rumenic acid occurred, resulting in the formation of trans-8,cis-10 18:2 acid, as determined by mass spectrometry of its 4,4-dimethyloxazoline derivative. Rate of isomerization was monitored by gas-liquid chromatography, using a 120-m capillary column coated with 70% equivalent cyanoalkylpolysiloxane polymer, and reaction was of first order. Furthermore, [1,5] sigmatropic rearrangement product analysis can be used as an indicator of heat treatment of natural fats and oils containing CLA.  相似文献   

20.
Dairy products are the main source of conjugated linoleic acid (CLA), a functional food component with health benefits. The major source of cis-9, trans-11 CLA in milk fat is endogenous synthesis via delta9-desaturase from trans-11 18:1, with the remainder from incomplete rumen biohydrogenation of linoleic acid. Diet has a major influence on milk fat CLA; however, effects of physiological factors have received little attention. Our objectives were to examine milk fat content of CLA and the CLA-desaturase index with regard to: 1) effect of breed, parity, and stage of lactation, and 2) variation among individuals and the relationship to milk and milk fat. Holstein (n = 113) and Brown Swiss (n = 106) cows were fed a single diet and milk sampled on the same day to avoid confounding effects of diet and season. Frequency distributions demonstrated that milk fat content of CLA and CLA-desaturase index varied over threefold among individuals, and this needs to be considered in the design of experiments. Holsteins had a higher milk fat content of CLA and CLA-desaturase index, but breed differences were minor. Parity and days in milk also had little or no relationship to the individual variation for these two CLA variables. Breed, parity, and days in milk accounted for < 0.1, < 0.3, and < 2.0% of total variation in CLA concentration in milk fat, respectively. Milk fat content of CLA and CLA-desaturase index were essentially independent of milk yield, milk fat percent, and milk fat yield. We speculate that the basis for the genetic variation among individuals is related to rumen output of trans-11 18:1 and to a lesser extent cis-9, trans-11 CLA, and to the tissue amount and activity of delta9-desaturase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号