首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
近年来,干法重介质流化床分选技术的快速发展为世界干旱缺水地区的煤炭洁净分选提质提供了一条有效途径。在干法重介质流化床中,上升气流驱动加重质颗粒流化形成具有似流体性质的气固两相流床层,营造了适合煤炭分选的均匀稳定的流态化环境。入选煤炭颗粒在床层中迁移、浮沉,受到自身重力、气流曳力、介质阻力、床层浮力等综合作用按密度进行分选。煤颗粒物性特征、床层密度分布、流化床操作参数等是影响煤颗粒受力特征、沉降特性及分选效果的关键因素。重点研究了加重质颗粒在流化过程中的迁移过程和床层密度空间分布规律,定量评估了床层密度的均匀稳定性;研究了颗粒粒度、密度、浸没深度与流化气速对入选煤炭颗粒受力特性的影响规律,采用响应面分析方法对比了不同影响因素的扰动规律与影响程度,建立了表征各影响因素与煤炭颗粒综合受力关系的关联式;确定了入选煤颗粒各密度组分的迁移路径与稳定分布区域。研究结果表明,以磁铁矿粉(0.300~0.074 mm, 2.36 g/cm~3)与玻璃微粉(0.300~0.074 mm, 1.14 g/cm~3)组成二元加重质作为流化介质颗粒,可形成密度均匀的气固流化床层,二元加重质颗粒混合均匀稳定,床层密度波动控制在±0.01 g/cm~3以内;各主要影响因素对入选颗粒受力影响显著性程度依次为粒径、浸没深度、流化气速;入选煤颗粒给入床层后,各密度组分快速松散、沉降、分层,分选时间≤8 s,高于床层密度的煤颗粒快速下沉,沉降于床高40 mm以下区域;低于床层密度的煤颗粒沿床层表面附近区域松散、横向迁移,分布在床高160 mm以上区域;中间密度颗粒松散、沉降并行,整体分布于45 mm床高以上的床层区域。  相似文献   

2.
针对传统TBS粗煤泥分选机存在的锥形阀间歇排料在高密度分选时易堵、分选床层上下喘动、精煤及尾矿灰分波动大、尾矿灰分低于60%等问题,研制了TCS智能粗煤泥分选机;TCS由稳流箱、尾矿变频泵和分配装置等构成,具有小流量、连续稳定排料等特点,而且分选密度提高,尾矿灰分可达65%,分选精度优于传统粗煤泥分选机,E_p值小于0.09。  相似文献   

3.
通过对3.00~0.25mm粒度级别粗煤泥,在实验室采用无阻尼柱形及有阻尼矩形2种液固流化床(即干扰床)进行对比分选实验,分选实验结果表明:在液固流化床中添加阻尼块后,分选效果得到了提高,笔者分析了其原因,并通过实验提出了下一步阻尼液固流化床的研究方向.  相似文献   

4.
通过对3.00~0.25mm粒度级别粗煤泥,在实验室采用无阻尼柱形及有阻尼矩形2种液固流化床(即干扰床)进行对比分选实验,分选实验结果表明:在液固流化床中添加阻尼块后,分选效果得到了提高,笔者分析了其原因,并通过实验提出了下一步阻尼液固流化床的研究方向。  相似文献   

5.
基于黑山露天煤矿气候环境采用干法分选工艺对该地区煤炭进行提质。为明晰原煤可选性,对黑山露天矿薄煤层进行了煤质资料分析,确定了煤种及原煤质量,分析了原煤浮沉特征。同时对80~0 mm原煤进行了分选试验,通过床层颗粒能量分布确定了分选过程中床层密度分布规律,采用响应面交互试验分析了各因素对灰分离析度的影响,确定了最佳分选条件,并用分选试验验证了该分选技术的可行性。结果表明,黑山露天矿薄煤层原煤属中等可选,随频率、振幅和气速的增加(均会引起能量增加),密度分布差异和灰分离析度呈先增加后减小的趋势,合适的床层能量输入有利于颗粒按密度离析分层。响应面分析表明灰分离析度对各因素变化敏感性较高,在频率32 Hz,振幅2.8 mm,气速0.6 m/s时,灰分离析度最大为0.98。在最佳分选条件下,80~0 mm原煤分选密度为1.97 g/cm~3,可能偏差E为0.22 g/cm~3,精煤产率为74.92%,精煤灰分为21.77%;对13~0 mm精煤再选后,灰分较主选精煤降低6.79%,80~0 mm精煤综合产率为66.99%,灰分为17.91%,干法分选工艺可有效提高黑山矿薄煤层的产品煤质量。  相似文献   

6.
通过对余吾选煤厂入选原煤性质的分析,说明试验煤样为低硫中灰贫煤,其中一1.5kg/L粗煤泥占煤泥总量的80%以上,粗煤泥中精煤含量较高、灰分较低,回收粗煤泥经济效益显著。阐述了TBS干扰床分选机的工作原理,说明其具有分选效果好,分选密度下限低,对入料煤质适应性好,入料分配系统简单等特点。针对余吾选煤厂分选粗煤泥时存在的精煤灰分过高、尾煤灰分较低、颗粒分级不均衡等问题,鉴于TBS分选机的高效分选效果,决定采用TBS干扰床分选机代替螺旋分选机。试验表明:TBS干扰床分选机分选密度为1.35kg/L,倾斜板角度为85。时,粗煤泥分选效果最佳,精煤灰分和尾煤灰分分别为10.42%和68.64%,降低了精煤灰分,提高精煤产率,减少后续浮选工作负荷,有利于提高选煤厂综合经济效益。  相似文献   

7.
介绍了中国选煤工业的现状,提出了粗煤泥的有效分选至关重要。液固流化床因较低的运行成本和较好的分选效果,与其他粗煤泥分选设备相比具有更大的优势。阐述了液固流化床的工作原理及其在中国的应用现状,预测了其广阔的前景,并指出了理论研究对于中国液固流化床发展的重要性。  相似文献   

8.
用落球法对不同参数条件下的气固浓相流化床床层表观粘度进行测量和线性拟合,得到了流化床的床层屈服应力和塑性粘度与各因素的关系;研究了粘度对分选时间的影响,建立了振动流化床分选时间与表观粘度和物料密度之间的数学模型. 结果表明,在同一气速下,随石英砂颗粒粒级及床层高度增大,床层表观粘度整体增大. 在一定的流化气速范围内,石英砂介质粒级为0.25~0.125 mm、床高190 mm时,床层粘度稳定在0.39~0.51 Pa×s. 加入振动后,床层粘度明显下降,频率15 Hz、振幅1 mm时流化效果较好,床层粘度稳定在0.69~0.95 Pa×s.  相似文献   

9.
混合物入选体积量对振动流化床分离特性的影响   总被引:1,自引:0,他引:1  
利用计算机在线测量床层密度及分析颗粒在床层中的分布,考察入选体积量对流化床中床层密度及颗粒分离效率的影响。研究表明,当入选体积量的分选上限为20%时,流化床才能对颗粒混合物进行有效的分选,并且在振动条件下比在非振动条件下的分选效率略高一些,这些研究结果对有振动重介质流化床分离细粒焦渣混合物具有一定的指导意义。  相似文献   

10.
液固流化床内固含率时空分布特性的CFD模拟   总被引:1,自引:1,他引:0  
姚秀颖  吴桂英  关彦军  张锴 《化工学报》2010,61(9):2287-2295
采用Brandani等考虑拟平衡状态下颗粒与流体相互作用的双流体模型,通过在商业软件CFX4.4平台上增加用户自定义子程序模拟了高0.5 m、宽0.1 m的二维液固流化床内固含率的时空分布特性。为了保证数值模拟精度、节省计算机运行时间,首先确定了适宜的网格尺度、时间步长和收敛判据。随后,考察了液固两相物性和操作条件对流化床内固含率时空分布特性的影响,模拟结果表明:增大颗粒粒径或密度会使颗粒向下加速运动,导致床层高度下降而垂直方向上任一水平面的平均固含率呈现增大的趋势;减小液体黏度或密度则会使颗粒向下加速运动,导致床层固含率增大;突然增大液速会使颗粒向上加速运动,导致床层固含率减小;升高温度的实质是使液体的黏度和密度均呈现下降的趋势,结果使颗粒向下加速运动,床层固含率增大。上述模拟结果与颗粒受力的理论分析相一致。  相似文献   

11.
屯留矿选煤厂粗煤泥分选存在精煤灰分高、产率低、尾煤灰分低等问题;经试验,采用TBS对粗煤泥进行分选,在合适的分选密度、倾斜板角度、注水压力和流量条件下,TBS分选工艺的精、尾煤灰分分别达到10.31%、69.37%。  相似文献   

12.
针对申家庄煤矿选煤厂粗煤泥含量高引起的浮选尾矿跑粗、高中损、高介耗等问题,结合TBS分选原理及应用效果,采用TBS干扰床分选机对粗煤泥分选系统进行改造。具体措施为:加大原煤脱泥筛入料水冲溜槽的流量和冲洗力度,筛前段加设分流板,提高脱泥筛的脱泥效率;缩短倾斜板浓缩机的倾斜板间距,提高倾斜角度,减少溢流中粗颗粒含量;更换小筛孔筛板,增加喷水设备,提高脱介效率。改造后倾斜板浓缩机溢流中+0.500mm粗颗粒产率由10。10%降为2.10%,改造效果明显;浮选压力明显降低,提高了精煤产率;TBS对粗煤泥分选效果良好,精煤质量和产率均大幅提高;介耗降低1.11kg/t,中损降低4.76%。  相似文献   

13.
为提高干扰床对细粒煤的分选效果,将一种多孔板应用于干扰床,采用实验与数值模拟相结合的方法,研究了多孔板对细粒煤分选密度、颗粒分布的影响及多孔板干扰床的流化特性。结果表明:多孔板使各粒级分选密度更加均匀,粒度-分选密度曲线斜率由-0.518增至-0.448,强化了颗粒的密度分离,提高了分选效果。高密度颗粒(1.70、1.90 g/cm3)主要集中在床层底部,低密度颗粒(1.40、1.50 g/cm3)主要集中在床层上部,其体积分数分别为29.79%、32.86%、48.90%、20.81%,错配颗粒比较少,实现了煤粒的有效分选。干扰床床层悬浮区密度不是煤粒分选密度,其平均值为1.23 g/cm3,且在高度方向上并不均匀。多孔板干扰床中形成了多孔板分级—板间流化区—多孔板与边壁间流化区的多级分选模式,能在一定程度上抑制高低密度颗粒错配,实现细粒煤的高效分选。  相似文献   

14.
《化学工程》2017,(6):44-49
为分析气液固三相流化床床层特性,选用两种粒径接近、密度不同的颗粒:塑料颗粒(湿堆积密度1 273 kg/m~3,平均直径750μm)和陶粒(湿堆积密度1 680 kg/m~3,平均直径800μm),以常温空气为气相、水为液相。实验装置内径0.13 m,全床高度4.75 m,实验液柱高度3.5 m,床内颗粒有足够的膨胀高度。分别测试了液速0—13 mm/s,气速0—12 mm/s条件下的床层高度,研究气液速对塑料颗粒和陶粒床层膨胀率的影响。研究结果显示液速较低时床层收缩,随着气速增加,收缩率增大;液速较高时,膨胀率大于0,随着表观气速的增加,膨胀率先降低,表观气速大于临界值后,膨胀率将增大;除高气速外,床层膨胀率总是随着液速的升高而增大。相同气速、液速条件下,大密度陶粒的床层膨胀(收缩)率大于塑料颗粒。  相似文献   

15.
概述了TZS-2700智能粗煤泥分选机在上海庙矿区中心选煤厂的安装背景,介绍了TZS-2700智能粗煤泥分选机的设备结构、工作原理、安装条件、调试过程和工艺性能。通过在中心选煤厂实际应用表明,TZS-2700智能粗煤泥分选机对0.25~1.00 mm粗煤泥有良好的分选效果,底流排料模式从间断排料转变为连续排料,数量效率较TBS分选机有显著提升,分选精度高,在稳定精煤产品质量的同时提升了精煤产率,为选煤厂带来了显著的经济效益。  相似文献   

16.
为更好地指导工业生产,了解不同粒径颗粒在气固流化床中的状态以及流化床中颗粒分布情况,针对气固流化床中窄筛分颗粒流态化特性进行数值模拟研究。通过流场模拟软件分析在相同流化床中不同粒径段的颗粒(46~80、106~113、185~221μm)和不同流化床进气速度条件下所能达到的体积分数和流化床层高度以及达到这一指标所需时间,并采用欧拉-欧拉模型和SIMPLE算法计算不同气速条件下的颗粒体积分数、速度分布。结果表明,在相同气速条件下,颗粒粒径增大,导致流化床内颗粒体积分数最高点与最低点的差距变大,颗粒分布不均匀性增加,同时床层整体高度下降,床层内颗粒密度上升,颗粒体积分数下降,流化效果降低;相同颗粒粒径情况下,增加气速可降低流化床内部颗粒的体积分数,增加气体与固体颗粒的接触面积,增强流化效果,但减少了流化床内部颗粒速度矢量分布达到均匀的时间,颗粒分布不均匀性更加明显。  相似文献   

17.
从颗粒沉降理论方面,分析了粗煤泥分选效果不理想的主要原因;阐述了4种粗煤泥分选设备,即煤泥重介质旋流器、水介质旋流器、干扰床分选机和螺旋分选机的工作原理及适用范围,解释了不同设备分选精度差异的原因,总结了各设备的特点,并对这几种设备的未来发展进行了展望。  相似文献   

18.
通过对动力煤选煤厂中常见的螺旋分选机、TBS粗煤泥分选机及TCS智能粗煤泥分选机的分选原理、结构特点、分选精度及其在选煤厂的实际应用等方面进行对比分析,得出TCS智能粗煤泥分选机既能高密度排矸,又能实现低密度分选,可根据实际生产情况适时调整分选密度,实现粗煤泥灵活掺混的结论。  相似文献   

19.
为实现物料的有效分选,以磁铁矿粉和玻璃微粉为混合加重质,研究了混合加重质的流化特性及空气重介质流化床床层密度梯度分布情况。结果表明:空气重介质流化床形成了均匀稳定的流化状态,当流化气速大于7.10 cm/s后,床层压降基本维持在510 Pa,床层密度基本不变,为1.71~1.74 g/cm3。当流化气速为7.95 cm/s时,流化床内气泡直径为15~25 mm,且分布均匀,流化床各层平均密度从上至下依次为1.72、1.74、1.74、1.74、1.73 g/cm3。流化床上部区域,超微细玻璃微粉被气流带到床层表面,使表面床层密度较小;流化床底部区域,气体分布相对均匀,并未形成大气泡,使该区域流化床床层平均密度偏小;而床层大部分区域床层平均密度均为1.74 g/cm3,比较稳定。因此,当流化气速为7.95 cm/s时,流化床内并未形成明显的分层和分级现象,说明加重质混合比较均匀,为空气重介质流化床分选物料创造良好条件。  相似文献   

20.
在间歇振动流化床中研究了细粒焦渣混合物的分离.通过考察细粒焦、细粒渣及细粒焦渣混合物的入选体积量对床层密度和分选效率的影响,得出适宜的操作条件.在此条件下对细粒焦渣混合物进行了分选实验,得到了较佳的分离效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号