首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 499 毫秒
1.
搭建了一台基于双包层掺镱光纤的全光纤结构1091 nm主振荡功率放大(MOPA)激光器.种子源为自行搭建的线形驻波腔掺镱光纤振荡器,最大输出功率为56 mW,放大的自发辐射(ASE)抑制比大于35 dB.通过两级预放结构放大后,种子功率达到3W.主放级为一个大模场双包层掺镱光纤放大器,最大输出功率达到41.6W,斜率效...  相似文献   

2.
报道了1030nm高功率被动锁模皮秒脉冲掺镱光纤激光器。该激光器为全光纤结构,采用主振荡功率放大(MOPA)技术,由皮秒种子源与三级掺镱光纤放大器组成。种子源使用半导体可饱和吸收镜(SESAM)进行被动锁模,输出脉冲中心波长为1030.4nm、3dB光谱宽度为0.15nm、脉冲宽度为30.7ps、重复频率为29.0MHz、输出功率为30mW。通过三级掺镱光纤放大器后,最终在30μm/250μm双包层掺镱光纤中实现了平均功率为101W的皮秒脉冲激光输出,3dB光谱宽度为1.46nm,脉冲宽度为36.6ps,放大器斜率效率为76.7%,单脉冲能量为3.48μJ,峰值功率为97kW,光束质量M2=2.78。  相似文献   

3.
报道了一个全光纤主振荡功率放大(MOPA)结构的窄线宽掺铥连续光纤激光器,该高功率光纤激光器由窄线宽连续光纤激光种子源和两级包层抽运掺铥光纤放大器组成。激光种子源经过两级双包层掺铥光纤放大器后,最大平均输出功率为120W,功率放大器的斜率效率高达60%,输出激光的中心波长为1986nm,3dB光谱带宽为0.48nm,平均输出功率未能进一步提高仅受限于最大抽运功率。此外,利用该两级掺铥光纤放大器,得到了平均输出功率为122W的宽带超荧光光源,放大后的超荧光源的中心波长为1990nm,3dB光谱带宽为25nm。  相似文献   

4.
人眼安全的1550 nm全光纤单频脉冲激光器具有广泛且诱人的应用前景。本文所研制的激光器采用全光纤主振荡功率放大(MOPA)结构和腔外声光调制的方法,一级预放大级采用1.5 m单模保偏掺铒光纤,输出功率21.45 mW;二级预放大级采用1.5 m双包层保偏铒镱共掺光纤,输出功率253.6 mW;功率放大级采用1 m双包层保偏大芯径铒镱共掺光纤,泵浦功率15.9 W时,最终实现了输出功率2.6 W、脉宽260 ns、重复频率10 kHz的单频脉冲激光输出。通过对各级增益光纤和无源光纤的长度优化,成功抑制了放大自发辐射(ASE)和受激布里渊散射(SBS),消除了放大过程中噪声的影响,得到了峰值功率1 KW的稳定单频脉冲特性。  相似文献   

5.
高功率窄线宽全光纤结构掺铥连续光纤激光器   总被引:3,自引:0,他引:3  
刘江  王璞 《中国激光》2013,40(1):102001-35
报道了高功率、窄线宽、全光纤结构的2μm波段掺铥连续光纤激光器。该掺铥连续光纤激光器采用了主振荡功率放大(MOPA)结构设计,通过采用790nm的多模半导体激光器抽运双包层单模掺铥光纤,获得了稳定的中心波长为1963nm的窄线宽、连续激光输出,最大输出功率为20mW。利用该低功率连续激光作为种子源经过两级掺铥光纤放大器后,平均输出功率达到了22W,相应的斜率效率为44%,激光中心波长为1963nm,3dB光谱线宽仅为0.24nm。  相似文献   

6.
王雄飞  李尧  朱辰  张昆  张利明  张大勇  赵鸿 《激光与红外》2015,45(11):1319-1324
研究实现了一种主振荡功率放大(MOPA)结构的高功率全光纤皮秒级被动锁模掺镱(Yb3+)光纤激光器。种子源为基于半导体可饱和吸收镜(SESAM)的锁模光纤激光器,其为线性腔结构,输出功率为5.97 mW;预放大级采用单模掺镱光纤进行放大,之后经过4倍重复频率倍增系统和两级双包层掺镱光纤放大器,最终实现了平均功率74.3 W,中心波长1063.4 nm,脉冲宽度7.0 ps,重复频率68 MHz的锁模脉冲激光输出。实验中通过对种子光的处理和光纤长度的控制,未出现受激布里渊散射(SBS)、受激拉曼散射(SRS)等非线性效应。  相似文献   

7.
瓦级输出全光纤结构2.0μm掺铥皮秒脉冲光纤激光器   总被引:2,自引:2,他引:0  
刘江  王璞 《中国激光》2012,39(8):802004-26
研制了高功率全光纤结构2μm波段掺铥皮秒脉冲光纤激光器。该激光器采用了主振荡功率放大(MOPA)结构设计,种子源采用790nm的多模半导体激光器作为抽运源、双包层掺铥光纤作为激光增益介质、半导体可饱和吸收镜(SESAM)作为锁模器件,从而实现了重复频率为10.4MHz的皮秒激光脉冲输出,其最大平均输出功率为15mW。种子源经过一级掺铥光纤放大器后,获得了1.1W高平均功率输出,相应的单脉冲能量高达105nJ,激光脉冲宽度为9ps,峰值功率为11.6kW。此时测得激光脉冲的中心波长为1963nm,3dB光谱带宽为0.5nm。  相似文献   

8.
王蓟  赵崇光  刘洋  王国政  王立军 《半导体光电》2006,27(5):522-525,555
通过求解速率方程,得到了掺镱双包层光纤激光器输出光功率和泵浦阈值功率表达式,分析了腔镜反射率、光纤长度对激光器阈值功率和输出激光功率的影响.采用相位掩模法在双包层光纤上直接写入光纤布拉格光栅,以此作为光纤激光器后腔镜,研制了稳定输出的掺镱双包层光纤激光器.试验得到了波长1 083.25 nm,线宽0.112 nm,最高输出功率1.07 W的稳定激光输出,泵浦阈值173 mW.  相似文献   

9.
为了研究不同增益光纤长度下1555nm高功率光纤放大器的输出功率,采用两级混合结构的方法,用掺铒光纤放大器和双包层铒镱共掺光纤放大器分别作为1级预放大器和2级主放大器。掺铒光纤放大器对信号光进行预放大,并提高放大器的信噪比;双包层铒镱共掺光纤放大器为主放大器,其双包层结构可以把更多的多模抽运光耦合进系统。对铒镱共掺光纤的最佳长度做了理论分析和实验验证,在信号光功率为10mW、掺铒光纤放大器的抽运功率为318.58mW、双包层铒镱共掺光纤放大器的抽运功率为11.71W、增益光纤长度为14m时,输出功率取得了2.11W的实验数据。在分析输出信号光谱时发现,L波段附近有放大自发辐射谱出现,这是选择的增益光纤过长导致的。结果表明,在光功率和信号光功率一定时,光纤放大器有一个最佳的光纤长度。这一结果对研究光纤放大器的高功率输出是有帮助的。  相似文献   

10.
报道了一种新型纳秒脉冲532 nm绿光激光器,其基频光为耗散孤子共振(DSR)方波纳秒脉冲、由掺镱光纤激光器得到,该激光器采用了全光纤主振荡功率放大(MOPA)结构设计。利用非线性偏振旋转(NPR)锁模技术,掺镱光纤激光种子源产生了稳定的DSR方波纳秒脉冲激光输出,输出激光的脉冲宽度随抽运功率的改变在3~40 ns之间可调。利用该DSR方波纳秒脉冲激光作为种子源,经过一级非保偏结构掺镱光纤纤芯放大和两级全保偏结构掺镱光纤包层放大之后,得到了平均功率为6.95 W,峰值功率为4.4 k W的脉冲激光输出。利用长度为20 mm的非线性晶体LBO作为频率转换器,得到了平均功率为2.1 W的绿光激光输出,相应的光光转换效率为30.2%。  相似文献   

11.
孙若愚  刘江  谭方舟  王璞 《激光技术》2013,37(4):417-420
为了得到高单脉冲能量的百皮秒激光脉冲,采用自制的被动锁模掺镱光纤激光器获得了100ps的激光脉冲输出,在此基础上采用两级全光纤结构主振荡功率放大器进行功率放大,其中预放大级采用7m纤芯的双包层掺镱光纤做增益介质,得到平均功率160mW的稳定脉冲输出;主放大级采用20m纤芯的双包层掺镱光纤做增益介质,在抽运功率逐步增加到35.37W时,输出功率达到了16.60W,相应的单脉冲能量为1.63J,峰值功率为16.61kW。此外,主放大级输出的激光通过自制的模场转换器与光子晶体光纤(纤芯4.6m)成功熔接,得到了2.85W的白光超连续光谱,光谱波长覆盖了600nm~1700nm的检测范围。结果表明,此激光可用于超连续谱光源的产生。  相似文献   

12.
39fs,16W全光子晶体光纤飞秒激光系统   总被引:11,自引:6,他引:5  
实验研究了高平均功率输出的光子晶体光纤飞秒激光系统。系统中振荡器和放大器均使用保偏型掺Yb3 双包层大模场面积光子晶体光纤(LMA-PCF)为增益介质,具有极低非线性系数、很高的增益系数,并能保证很好的环境稳定性。系统研究了种子光功率、脉冲宽度、脉冲啁啾和放大器抽运光功率等参数对系统输出飞秒激光脉冲宽度的影响。在输入种子光平均功率为180mW,放大器抽运功率为40W时,获得平均功率16W输出(对应单脉冲能量320nJ),脉冲宽度压缩到39fs。  相似文献   

13.
呼吸脉冲锁模的光子晶体光纤飞秒激光器   总被引:8,自引:6,他引:2  
报道了一种掺Yb偏振型大模场面积光子晶体光纤(LMA-PCF)飞秒激光器。作为增益介质的光子晶体光纤的单模场面积比传统光纤高一个数量级,有效地降低了非线性系数,使激光器获得高能量输出。激光器基于线形腔结构,利用半导体可饱和吸收镜实现自启动锁模。光纤激光器利用光栅对进行腔内色散补偿,使其运转在呼吸脉冲锁模状态,即在谐振腔的零色散点附近实现锁模。当腔内净色散呈反常色散时,激光器获得了平均功率为400mW,重复频率为47MHz(对应于8.5nJ的单脉冲能量),脉冲宽度为500fs的稳定的锁模脉冲输出,经腔外色散补偿,脉冲压缩至98fs。当腔内净色散呈正常色散时,激光器输出的单脉冲能量为10.6nJ,脉冲宽度为1.76ps,经腔外色散补偿,脉冲压缩至160fs。  相似文献   

14.
1030nm高重复频率纳秒脉冲全光纤放大器   总被引:1,自引:0,他引:1  
采用脉冲调制的单模带尾纤输出的半导体激光器作为种子源,以掺镱光纤为增益介质,采用主振荡功率放大(MOPA)结构,实现了1030nm全光纤脉冲激光放大。脉冲重复频率在50~100kHz范围内可调,在重复频率50kHz时,实现了脉冲宽度为6.53ns,峰值功率为16.08kW的脉冲输出,相应的斜率效率为69%,输出激光的中心波长在1029.49nm。实验还研究了不同重复频率下输出激光脉冲的时域特性。该激光器的输出波长在激光雷达探测器的光谱响应范围内,可作为激光雷达发射光源。  相似文献   

15.
基于6H-SiC衬底外延石墨烯的被动锁模掺镱光纤激光器   总被引:5,自引:4,他引:1  
报道了6H-SiC衬底外延生长的石墨烯作为可饱和吸收体,环形腔结构的全正色散被动锁模掺镱光纤激光器。在注入抽运功率为250mW时,得到稳定的重复频率为1.05MHz的自锁模脉冲,平均输出功率为6mW;当注入抽运功率增加到480mW时,最大平均输出功率为20mW,相应的最高单脉冲能量为19nJ,激光脉冲宽度约为520ps。  相似文献   

16.
激光二极管抽运掺Yb3+光纤放大器获得2.41W超短脉冲输出   总被引:1,自引:1,他引:0  
对国产掺镱(Yb3 )双包层大模场面积光纤超短脉冲放大器进行了系统的实验研究。以自己搭建的脉冲宽度为2.3ps,重复频率为95MHz的全固态锁模激光器作为种子源,以976nm大功率光纤耦合激光二极管为抽运源,以1.6m国产掺Yb3 双包层大模场面积光纤为增益介质,在11.2W的入纤抽运功率下,将平均功率为100mW的脉冲种子光放大到平均功率2.41W,单脉冲能量达到了25nJ,放大后脉冲的宽度(时域宽度)和光谱都有所展宽。  相似文献   

17.
为了研究掺铒光纤激光器超短脉冲的产生,采用增益平坦型掺铒光纤放大器、两个偏振控制器以及3个耦合器,利用非线性光纤环形镜加成脉冲锁模技术,通过改变偏振控制器的方向,获得最大输出功率为0.6mW的脉冲输出,对应的光谱宽度9nm、中心波长1561nm、脉冲宽度434ps、脉冲的重复频率为1.1MHz.该脉冲经过掺铒光纤放大器放大后,最大输出功率为10.8mW.放大后锁模脉冲的中心波长保持不变、光谱带宽稍有变窄、输出功率明显增大、脉冲宽度展宽为495ps.实验结果表明,采用商用的掺铒光纤放大器可实现结构简单、调节方便的掺铒光纤激光器超短脉冲输出,且掺铒光纤激光器可以实现自启动,并长时间稳定锁模工作.  相似文献   

18.
徐岩  彭志刚  石宇航  王贝贝  程昭晨  王璞 《红外与激光工程》2022,51(6):20210442-1-20210442-9
光纤-固体混合放大技术能够将光纤激光器和固体放大器的优势结合,获得结构紧凑、成本低廉的高功率超短脉冲激光。因此,实验设计了基于掺镱光纤-固体混合放大技术的高平均功率超短脉冲激光器。该激光器主要由全光纤结构激光器和两级固体放大器组成,第一级为基于Yb: YAG单晶光纤的固体放大器,第二级为基于无侧面抛光的棒状Yb: YAG晶体的主放大器。超短脉冲全光纤前端平均输出功率为6.5 W,重复频率52.9 MHz,脉冲宽度47.5 ps。第一级单晶光纤放大器采用单通放大形式,在反向泵浦功率182 W时获得40 W的平均功率。第二级固体放大器同样为单通放大,在反向泵浦功率307 W时获得平均功率122.9 W的超短脉冲激光输出,滤除热退偏激光后获得了107.3 W的线偏振超短脉冲激光,对应斜效率为26.1%。此时测得脉冲宽度为12.1 ps,中心波长为1 030.6 nm,光谱宽度为2.4 nm。在最大输出功率107.3 W时,测得水平和垂直方向的光束质量因子Mx2=1.45,My2=1.20。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号